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Abstract

Knowledge of paleo-atmospheric CO2 is critical to understanding how Earth System processes respond to a full range of
CO2 concentrations, both past and future. This review addresses the terrestrial and marine proxies used to estimate paleo-
CO2 concentrations and how the biological and/or geochemical properties of each proxy encodes the ambient CO2 signal, as
well as the associated assumptions and uncertainties of the CO2 estimates. The Phanerozoic history of atmospheric CO2 is
discussed, highlighting a new high-fidelity Cenozoic CO2 curve and its implications. Subsequently, pre-Cenozoic CO2 as is
currently understood is outlined, in the context of its temporal relationship to climate and evolutionary changes. An overview
of carbon cycle modeling for estimating paleo-CO2 is presented, including the key principles, models, and updates in the
field, as well as the key emerging patterns and planned next steps. The review concludes by addressing next steps in advancing
the science of CO2 reconstruction and for improving our understanding of the evolution of atmospheric CO2 over the past
half-billion years.
and co-corresponding authors.
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Key points
• Overview the theory of terrestrial and marine paleo-CO2 proxies and the assumptions and uncertainties associated with

their CO2 estimates.

• Present the current understanding of Phanerozoic CO2 and highlight the linkages to global surface temperature and major
climate and evolutionary changes.

• Discuss the key principles, models and updates in carbon cycle modeling of paleo-CO2 as well as key emerging patterns in
modeled CO2 and future directions.

• Address proposed efforts to advance the science of paleo-CO2 reconstruction and for building the next-generation
Phanerozoic CO2 record.

Introduction

Atmospheric carbon dioxide concentrations (CO2) have risen >50% above pre-industrial levels, with global annual CO2 concen-
trations measured at the Mauna Loa Observatories exceeding 420 ppm (422 ppm in July 2023; https://gml.noaa.gov), likely for the
first time in over 3 or 4 million years (Tierney et al., 2020; The CenCO2PIP Consortium, 2023). Thus, Earth’s climate, forced by
increased greenhouse gas concentrations in the atmosphere, is now entering uncharted climatic territory for humankind. This is
illustrated by the global temperature anomaly of over 1.2 �C above 1881–1910 baseline values (NASA Giff data) reached in 2016
and again in 2020 (UNFCCC, 2015) and by recent evidence that average temperatures were 1.48 �C above pre-industrial levels in
2023, making it the planet’s warmest year on record and perhaps in the last 100,000 years (https://www.copernicus.eu/en). The
timing of when the world will achieve net zero carbon emissions and cross the +1.5� to 2 �C climate thresholds set by the 2015 Paris
Agreement are topics of much scientific and policy interest and debate (IPCC, 2021, 2022; Palazzo Corner et al., 2023; Tripathy
et al., 2023). Some recent studies, including those leveraging artificial intelligence (Diffenbaugh and Barnes, 2023), suggest that
Earth will likely cross the 1.5 �C threshold within the next decade and that keeping global warming to below 2 �C is increasingly less
likely (Lee et al., 2021; Hansen et al., 2023). Others argue however that maintaining temperatures below 2 �C is still feasible and
dependent on when net zero carbon emissions are reached (IPCC, 2021; Palazzo Corner et al., 2023, Michael Mann blog: https://
michaelmann.net/content/comments-new-article-james-hansen). This uncertainty in when critical global thresholds will be reached
makes constraining how future impacts of global warming will play out a major scientific challenge. Climate proxy records obtained
from geological archives provide the opportunity to study Earth System behavior during past CO2-driven climate change and future
Earth near-analogues to better understand the aforementioned issues.

Quantitative paleo-CO2 estimates with well-constrained uncertainties are thus fundamentally important to researchers in
numerous disciplines because CO2 and planetary function are intrinsically linked. Well-constrained paleo-CO2 records are
necessary for validating and parameterizing climate (Caballero and Huber, 2013; Hollis et al., 2019; Anagnostou et al., 2020;
Zhu et al., 2020; Tierney et al., 2020), and for ecosystem models utilized to assess ecosystem—CO2 linkages and physiological
thresholds for CO2 (e.g., Ibarra et al., 2019; Gurung et al., 2022; Matthaeus et al., 2023). They are crucial in the quest to constrain the
magnitude and state-dependency of equilibrium climate sensitivity (ECS), currently broadly constrained at between 2��C and
4.5 �C (Sherwood et al., 2020; IPCC, 2022), but likely higher in warmer climates (Caballero and Huber, 2013; Friedrich et al., 2016;
Zhu et al., 2019). Paleo-CO2 records are further important for advancing our understanding of long-term climate (Earth System)
sensitivity (ESS) (Royer et al., 2007; Wong et al., 2021; The CenCO2PIP Consortium, 2023), global biogeochemical cycles, and for
exploring interactions within the Earth System, including the biosphere, atmosphere, lithosphere and hydrosphere (Goddéris and
Donnadieu, 2019; McKenzie and Jiang, 2019; Tierney et al., 2020; Goddéris et al., 2023). Advancing deeper understanding of
CO2-forced changes and consequences is additionally of societal importance, given that the time scales of environmental impacts,
socio-economic implications, and mitigation strategies scale to Earth’s sensitivity to CO2 concentrations (Hope, 2015).

Multiple reconstructions of the evolution of atmospheric CO2 over the past 400+ Myr have been developed based on
compilations of proxy data as well as using geochemical models (e.g., Berner, 1991, 2006a; Berner and Kothavala, 2001; Foster
et al., 2017; Lenton et al., 2018; Mills et al., 2019, 2021). Although broad patterns of CO2 have emerged, paleo-CO2 estimates are
not always consistent and diverge significantly during some intervals. Possible sources of these inconsistencies are numerous and
differ between proxies (see supplemental materials to The CenCO2PIP Consortium, 2023). A major factor, common to many
proxies, is uncertainty about how environmental and ecological drivers affect the CO2 proxy signal. Constraining these parameters
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typically requires the use of additional proxy records with their own levels of uncertainty. These challenges of proxy-enabled
CO2 reconstructions can lead to a number of assumptions that increase in volume as proxies are applied further back in time.
Because these limitations are well recognized by paleoclimatologists, the past decade has nonetheless produced significant advances
in deep-time proxy validation and application, including comparison of proxy measurements from co-existing (extinct and/or
extant) species, better characterization of environmental background data, such as the elemental and isotopic composition
of seawater and atmosphere, and development of proxy system models, as well as efforts to increase the temporal resolution of
reconstructions (e.g., The CenCO2PIP Consortium, 2023).

Here we present a review of the current state-of-the-art, progress made, and challenges remaining in paleo-CO2 reconstruction
using models and proxies. We also present opportunities for further improving the quality and accuracy of paleo-CO2 estimates.
Following the introduction (Section “Introduction”), we outline how past CO2 can be reconstructed using proxies, explaining the
mechanisms and methods involved for each of the most prevalent marine and terrestrial CO2 proxies (Section “Proxy approach to
paleo-CO2 reconstruction”). Next, Phanerozoic CO2 history as currently understood is discussed in Section “current status of paleo-
co2 reconstructions”, highlighting first a new high-fidelity Cenozoic record based on thorough proxy vetting and modern proxy
theory (The CenCO2PIP Consortium, 2023) and then focusing on the pre-Cenozoic CO2 and climate evolution. This is followed
by an overview of carbon cycle modeling as a means to estimate paleo-CO2, including the key principles, models and updates in
the field, as well as the key emerging patterns and planned next steps (Section “Estimating paleo-CO2 with long-term carbon
cycle models”). Finally, we summarize the state of the art in Phanerozoic CO2 reconstruction with proxies and models, and list
planned future efforts to further improve our understanding of the Phanerozoic CO2 record and its relationship to paleoclimate
(Section “Summary and future directions for paleo-co2 reconstruction”).
Proxy approach to paleo-CO2 reconstruction

Ice cores provide direct measurements of paleo-CO2, but this archive is limited to the last 800 ka with isolated intervals of data back
to 2 million years, during which time CO2 consistently remained below 300 ppm (Bereiter et al., 2015; Higgins et al., 2015; Yan
et al., 2019). To explore ‘future-equivalent’ periods in the more distant past, where CO2 and temperatures were highly elevated,
indirect proxies are required to assess paleo-CO2. Proxies utilize the biological and/or geochemical properties of fossils andminerals
that are known to respond to ambient CO2 when they lived or were formed. Each is associated with different assumptions, degree
of understanding, and levels of estimation uncertainty. Paleo-CO2 proxies have increased in their sophistication over the past
several decades and modern approaches involve more highly parameterized inverse models that use proxy data as the input and
work backwards to estimate the conditions that produced those observations. Because of these advances in some methods, many
published CO2 records would benefit significantly from being re-evaluated.

Paleo-CO2 can be inferred from both terrestrial and marine archives (Fig. 1). Marine proxies include the phytoplankton and
boron isotope proxies and terrestrial proxies include stomatal frequencies, leaf-gas exchange and leaf-carbon isotopes, as well as the
carbon isotopic composition of paleosols (ancient soils) and their occluded organic matter, and the carbon isotopes of liverworts
and soil-formed (pedogenic) goethite. Given the relative sparsity of seafloor records older than 200 Ma and significant plankton
evolution since this time (Jurassic Period), application of the two marine proxies has largely focused on the Cenozoic. Conversely,
terrestrial proxies have been applied through to early Paleozoic (440 Ma) and even Precambrian geologic records (Somelar et al.,
2020), including the less extensively used liverwort d13C proxy and the d13C of pedogenic goethite. Here, we briefly overview the
potential and challenges of the commonly used proxies for paleo-CO2 reconstruction. For a comprehensive review of the
marine and terrestrial proxies as well as new advances, and discussion of the sources and scales of uncertainty associated with
individual paleo-CO2 estimates, the reader is referred to the supplemental materials of The CenCO2PIP Consortium (2023) and
www.paleo-co2.org.
Marine paleo-CO2 proxies

Two types of marine proxies are utilized for reconstructing paleo-CO2 using geological materials deposited in open ocean regions.
The first utilizes the carbon isotopic composition of the organic remains of marine algae (Fig. 1A), whereas the second explores
the concentration and isotopic composition of boron incorporated into the fossil shells of calcifying organisms (Fig. 1B). Of the
boron proxies, the more commonly used and better understood proxy for reconstructing paleo-CO2 is the boron isotopic
composition.

Phytoplankton proxy
Phytoplankton (marine algae) photosynthesis fractionates carbon isotopes by preferentially assimilating the lighter 12C isotope
over 13C in the photosynthate, with the magnitude of fractionation signal (ep) increasing with increasing dissolved CO2 in
surface seawater ([CO2aq]; Fig. 1A). Assuming that CO2 diffuses passively from seawater into the algal cell, the carbon isotope
fractionation associated with the carbon fluxes in and out of the cell thus would be mostly controlled by [CO2aq] (Freeman and
Hayes, 1992; Pagani et al., 2002). The higher the CO2, the more selective the algae can be and the lower the carbon isotopic
composition of algal matter (d13Cphyto) (Rau et al., 1996). This fractionation, ep, is stored in organic biomolecules, such
as alkenones of coccolithophorid algae, which can be retrieved from ocean sediments. Although alkenones have been used

http://www.paleo-co2.org
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Fig. 1 Compilation of marine and terrestrial CO2 proxies. (A) Phytoplankton d
13C proxy relating the d13C of algae biomarkers to the d13C proxy of the aqueous

carbon source for photosynthesis (ep). (B) Boron isotope proxy based on the d11B of marine carbonates (e.g., foraminifera shells) that incorporate borate ions
and whose d11B is pH- and atmospheric CO2-dependent. (C) Cuticle of the ‘living fossil’ Ginkgo biloba, modern relative of the CO2 proxy fossil plant group
Ginkgoales, exhibiting epidermal cells and stomata (darker circular patterns). Scale bar is 100 mm. (D) Inverse relationship between stomatal density (SD) and
stomatal index (SI) and atmospheric CO2. (E) Mechanistic CO2 model based on a universal leaf gas-exchange equation equating the concentration of atmospheric
CO2 to the rate of CO2 assimilation during photosynthesis (An), total leaf conductance to CO2 (gc(tot)) and the gradient between atmospheric and intercellular
CO2 (Ca – Ci); from Franks et al., 2014. (F) Terrestrial plant proxies using the d13C of plant fossils or bulk organic matter in sediments. Left: liverwort
proxy—nonvascular thalloid liverwort with non-stomatal pores through which CO2 is uptaken; source: https://mdc.mo.gov/discover-nature/field-guide/liverworts.
Right: land plant d13C proxy—e.g., Medullosan fossil frond. (G) paleosol carbonate CO2 proxy. Calcite rhizolith that formed around an early Permian C3 tap root.
(H) Soil-formed goethite CO2 proxy. Sample of bog iron from a late Paleozoic soil, northwestern Argentina. (I) NahcoliteCO2 proxy. Thin section photomicrograph
of primary nahcolite and halite. Inter-layered nahcolite (N) and halite (H) laminae with halite precipitates (cubes and plates) that precipitated as rafts at the air-water
interface. Source: Demicco and Lowenstein, 2010.
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widely for this purpose (e.g., Pagani et al., 2005), they only evolved during the Cenozoic and may underestimate aqueous
PCO2 (Bolton and Stoll, 2013). Laboratory and field experiments have shown that photosynthetic carbon isotope fractionation (ep)
is additionally influenced by nutrient concentration, irradiance, cellular growth, calcification rates, carbon source (i.e., CO2aq and/or ),
and potentially active carbon-concentrating mechanisms (e.g., Burkhardt et al., 1999; Rost et al., 2002). The degree to which these
variables affect d13Cphyto, and the degree to which the estimates of these paleo-environmental and biological variables are
constrained, contributes to the uncertainties of paleo-CO2 estimates made using the phytoplankton proxy and are the subject of
ongoing research (e.g., Tanner et al., 2020; Stoll et al., 2019; Wilkes and Pearson, 2019; Zhang et al., 2019b, Zhang et al., 2020;
Badger, 2021; Phelps et al., 2021).

A universal molecular fossil is phytane, a diagenetic derivative of chlorophyll found in marine deposits and oils of up to 2 billion
years of age. Because phytane averages the carbon isotope fractionation of all photosynthesizing organisms present at the time of
synthesis, this proxy has been used to reconstruct paleo-CO2 throughout the Phanerozoic (Witkowski et al., 2018). The ubiquitous
presence of chlorophyll in all algae, however, does not allow for the influence of taxon-specific paleo-environmental and biological
factors on the proxy signal.

https://mdc.mo.gov/discover-nature/field-guide/liverworts
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Boron isotope proxy
A second commonly used marine CO2 proxy is the boron isotope composition of the fossil shells (d11Bcalcite) of marine calcifying
organisms (Fig. 1B). The d11Bcalcite, if reconstructed from sea-surface dwelling planktic foraminifera, can be controlled by atmo-
spheric CO2 (Hönisch and Hemming, 2005; Henehan et al., 2013). This proxy is based on the observation that there are only two
dominant dissolved boron species in seawater, boric acid (B(OH)3) and the borate ion (), and their relative concentrations change
predictably with seawater pH. Boric acid dissociates to borate and H+ ions at higher pH. There are two stable isotopes of boron, of
which 10B preferentially resides in the borate ion, and 11B in boric acid. As seawater pH increases, more and more boric acid
dissociates and 11B is progressively present as borate ions. Consequently, the boron isotope ratio (11B/10B) of borate ions increases
at higher pH and decreases at lower pH. Marine carbonates preferentially incorporate the charged borate ion into their shells, so
their B isotopic composition (d11Bcalcite) also follows the abundance and isotopic composition of borate ions in seawater as pH
changes. In open-ocean regions, the inferred changes in seawater pH can be translated to atmospheric CO2 if air-sea gas exchange of
CO2 is in equilibrium (i.e., [CO2aq] ¼ atmospheric pCO2), temperature, salinity, pressure and a second parameter of the marine
carbonate system (e.g., alkalinity, dissolved inorganic carbon, calcite saturation) need to be constrained so that the system of
equations can be solved for PCO2.

The precision of boron isotope-based paleo-CO2 estimates, in particular going back in time, is influenced by unknown vital
effects in extinct taxa on d11Bcalcite (Anagnostou et al., 2016; Henehan et al., 2016; Hönisch et al., 2021) and by the limited
understanding of how the boron isotope composition of seawater (d11Bsw), key to translating measured d11Bcalcite to seawater pH,
evolved prior to the Cenozoic (e.g., Raitzsch and Hönisch, 2013; Greenop et al., 2017; Lemarchand et al., 2000). Additionally, the
lack of independent proxies for alkalinity or dissolved inorganic carbon (DIC) concentration, which are needed to constrain
the second parameter of the marine carbonate system, requires knowledge of paleo-seawater conditions that are only weakly
constrained, but are known to have varied over the multi-million year timescale, such as the major ion chemistry of the ocean. These
issues are the targets of ongoing research. For recent reviews of this proxy see Rae (2018) and Hönisch et al. (2019).
Terrestrial paleo-CO2 proxies

Terrestrial proxies utilize the fossilized cuticles of vascular plant leaves, with some using their C isotopes, or the chemistry of
minerals (carbonate and goethite) and organic matter formed in ancient soils (Fig. 1C–H).

Plant-based terrestrial proxies
For the family of proxies that utilize terrestrial fossil plants, there are several approaches. These include three stomatal proxies
and two that utilize the carbon isotope composition of plant-derived organic matter. The cuticles, or waxy outermost layer,
of a leaf of vascular plants can be exceptionally preserved in the geologic record and preserve casts of stomata and epidermal
cells (Fig. 1C). Stomatal pores are the primary conduit for gas exchange between the leaf and atmosphere, thus vascular
plants typically optimize the density and size—including active control of opening/closing—of stomatal pores on their leaf
surfaces to ensure sufficient CO2 uptake for assimilation, while minimizing water vapor loss. For most C3 plants (gymnosperms),
this leads to an inverse relationship between atmospheric CO2 and the stomatal density (SD ¼ Nstomata/mm2) as well as the more
commonly used stomatal index (SI (%) ¼ Nstomata/(Nstomata + Nepidermal cells) � 100) with an increasing number of stomata on
leaves deriving from periods of low CO2 and vice versa for times of high CO2 (Fig. 1D) (Woodward, 1987; McElwain and
Steinthorsdottir, 2017).

This inverse relationship is leveraged by three methods to reconstruct the CO2 concentration experienced by the fossil plant. The
first is the empirical stomatal ratio method that uses the ratio between the SD or SI of fossil leaves and their nearest living relative
(at ambient CO2) to semi-quantitatively determine paleo-CO2 (McElwain, 1998). A second approach uses an empirical transfer
function to infer paleo-CO2 that is defined using herbarium or experimental datasets of responses of nearest-living relatives to a
range of CO2, which is then used to calibrate the fossil stomatal frequencies (Kürschner et al., 2008; Barclay and Wing, 2016). For
extinct plants lacking a nearest-living relative, a nearest living functional equivalent is used (e.g., Montañez et al., 2016).
Environmental parameters other than CO2 (e.g. temperature, nutrient availability, water availability) and differences in physiolog-
ical traits can influence SD and SI and the CO2-stomata relationship varies among taxa (Haworth et al., 2010; Kürschner et al., 2008;
Galvao Duarte, 2019; Yoitis and McElwain, 2019).

The third and most recent approach uses a mechanistic model (Fig. 1E) (Franks et al., 2014; see also Konrad et al., 2008) based
on a universal leaf gas-exchange equation equating atmospheric CO2 to the rate of CO2 assimilation during photosynthesis (An).
The model describes the leaf assimilation rate (An) as the product of two factors: the total leaf conductance to CO2 (gc(tot)), which
can be inferred by measuring fossil cuticle stomatal traits (density, stomatal pore length and guard cell width) and the gradient
between atmospheric and intercellular CO2 (ca – ci), which is inferred from the C isotopic composition of the fossil cuticle
and contemporaneous marine carbonate shell. The cuticle d13C records the degree to which the lighter C isotope (12C) in CO2 is
assimilated over 13C during photosynthesis (i.e., degree of carbon isotopic fractionation (D13C ¼ d13Cair – d13Cplant)) that is
controlled ambient CO2, other environmental factors (e.g., precipitation-to-evaporation ratio, irradiance), and evolutionary
differences by plant group (Porter et al., 2017). All three methods rely on comparisons between the fossil plants and their
nearest living relative or nearest functional equivalent. Thus, the accuracy and precision of stomatal-based CO2 increases when
using multiple species or proxies (Montañez et al., 2016; Kowalczyk et al., 2018; Porter et al., 2019; Steinthorsdottir et al., 2021).
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Notably, a global study of the living fossil Ginkgo biloba, with long evolutionary lineages, documented a robust relationship between
ambient CO2 and stomatal frequency using the three stomatal proxy methods, indicating no influence of climate on the stomatal
proxy for this taxon (Steinthorsdottir et al., 2022).
C isotope-based proxies
The C isotopic composition of liverworts, one of the oldest groups of land plants (Fletcher et al., 2006, 2008; Kowalczyk et al.,
2018), has potential as a paleo-CO2 proxy (Fig. 1F), but the rarity of liverwort fossils in the geologic record makes this a less
commonly used terrestrial plant proxy. This proxy is based on the existence in nonvascular liverworts of static pores through which
CO2 uptake cannot be actively controlled as opposed to functional stomata as in vascular plants. This physiological characteristic
along with the restriction of liverworts to wet environments (i.e., no imprint of water stress on d13Cplant) means that the degree
of C isotopic fractionation during photosynthesis (D13C) is largely controlled by the concentration of atmospheric CO2 leading to
greater fractionation (and lower d13Cplant) under higher CO2.

The land plant carbon isotope proxy (land plant d13C proxy) is based on experimental studies that document a hyperbolic
relationship between the magnitude of D13C and atmospheric CO2 (Schubert and Jahren, 2012) (Fig. 1F). This CO2 effect onD13C is
attributed to changes in photorespiration, and in turn, carbon isotope fractionation (i.e., photorespiration preferentially oxidizes
isotopically light carbon initially fixed by the enzyme Rubisco, increasing the d13C of the photosynthate and D13C) with increasing
CO2 (Schubert and Jahren, 2018). The plant d13C proxy has been validated against ice core data of the past 100 ka (Schubert and
Jahren, 2015), its precision has been evaluated statistically (Cui and Shubert, 2016), and its accuracy has been tested against other
paleo-CO2 proxies (Porter et al., 2019). Given that this proxy approach is based on the magnitude of change in D13C, paleo-
CO2 concentration is typically calculated based on a change in D13C relative to an independent reference D13C estimated for a time
for which the paleo-CO2 value is determined using an independent proxy. Overall, the uncertainty on proxy-based CO2 estimates
increases at elevated CO2.

The land plant d13C proxy has potential for wide applicability given that fossil organic matter is well preserved in terrestrial
sediments deep into the geologic record. But there are multiple challenges to applying this proxy for robust paleo-CO2-

reconstruction that await future research (e.g., Zhang et al., 2019a). Applying the d13C of bulk organic matter, an approach
commonly used, integrates carbon from all organic matter in the sediment. But this approach can be limited by multiple factors
that influence the magnitude of carbon isotope fractionation. Sedimentary organic matter can include other sources of C than
plant-derived and/or include organic matter from plants that utilized different photosynthetic pathways (C3, C4, CAM).
And different plant groups, including within C3 plants, exhibit evolutionary differences in D13C (Porter et al., 2017). These can,
in turn, lead to considerable differences in absolute values of d13C between sources relative to the ambient CO2 d

13C. Furthermore,
environmental conditions, including changes in CO2, can lead to changes in leaf structure, stomatal response and CO2 assimilation
rate, as well as post-photosynthetic processes that can all influence the magnitude of carbon isotope fractionation by plants,
potentially leading to inverse relationships between D13C and ambient CO2 (Kohn, 2016; Porter et al., 2017; Zhang et al., 2019a;
Schlanser et al., 2020; Scher et al., 2022). There remains community debate regarding the accuracy and precision of this proxy
approach (Lomax et al., 2019; Schlanser et al., 2020; see discussion in Zhang et al., 2019a). This proxy will benefit from future
efforts to constrain the magnitude of the CO2 effect on D13C, to better understand the d13Cplant sensitivity to changing environ-
mental conditions (e.g., water availability on the short-term; O2/CO2 on the long-term), taxonomy, and post-photosynthetic
processes, and to improve deep-time reference values (see supplemental materials of The CenCO2PIP Consortium, 2023).
Mineral-based terrestrial proxies
There are three terrestrial mineral-based paleo-CO2 proxies, with the paleosol carbonate CO2 proxy (Fig. 1G) far more commonly
used than the goethite or gibbsite proxy (Fig. 1H) or the nahcolite proxy (Fig. 1I). The paleosol carbonate paleo-CO2 proxy is based
on a CO2 mixing model with two endmembers: (1) soil-respired CO2 produced by plant roots during respiration and by microbial
breakdown of soil organic matter, and (2) atmospheric CO2 (Cerling, 1991, 1992). Paleo-CO2 estimates are determined by
specifying four variables in a diffusion-production equation (see Cerling, 1999): (1) the d13C value of paleo-soil CO2 (i.e., the
CO2 in soil pore space), (2) the d13C value of the soil-respired CO2, (3) the d13C value of the paleo-atmospheric CO2, and
(4) the concentration of the paleo-soil CO2. The d

13C value of calcium carbonate (d13Ccarb) precipitated as nodules or around roots
(rhizoliths) in modern and ancient soils (paleosols) is controlled by the d13C value of the total soil CO2 when the carbonate is
formed, and thus d13Ccarb is the measurable quantity influenced by atmospheric CO2. A temperature-sensitive isotope fractionation
factor is applied to relate the d13C value of the soil carbonate to the soil CO2. The d

13C value of the soil-respired CO2 is typically
based on d13C values of bulk organic matter in the paleosol or occluded within the soil carbonates (Montañez, 2013), with or
without a correction for occurrence within the organic-rich A or mineral-rich B horizon of soils (Breecker, 2013). There are
complications with using bulk organic matter extracted from paleosols as microbial decomposition of soil organic matter, in
particular in the A horizon, which leads to 13C-enrichment of the organic matter (1–2%) (Breecker, 2013. It is thus recommended
that organic matter occluded within soil carbonates be used to determine the d13C of paleo-soil-respired CO2. The most physically
proximal fossil leaf cuticles or coals have also been used in previous studies which can be problematic given taxonomic variability
in and environmental influences on plant d13C values, as well as thermal enrichment of coal d13C values. For paleo-atmospheric
CO2, the d

13C value is inferred from contemporaneous marine carbonates, e.g., planktic foraminifera for the Cenozoic (Tipple et al.,
2010), and brachiopods for the pre-Cenozoic (e.g., Ekart et al., 1999; Montañez et al., 2007, 2016; Nordt et al., 2015).
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The largest source of uncertainty in paleo-CO2 estimates made using the paleosol carbonate paleo-CO2 proxy is the fourth
parameter, the concentration of the paleo-soil CO2 (Breecker, 2013; Montañez, 2013). This reflects the lack of a proxy in ancient
soils for total soil CO2 (denoted as S(z))—to which the model results are quite sensitive (i.e., S(z) is the multiplier in the equation).
Many studies assumed values based on the mean concentrations of the growing season CO2 in modern soils (e.g., Ekart et al., 1999;
Schaller et al., 2011; Schaller et al., 2015). New approaches for estimating S(z) based on modern and Holocene soil studies are
increasingly used in paleo-CO2 reconstructions, including a taxonomic soil order-based S(z) (Montañez, 2013), a mean annual
precipitation-based S(z) that uses the chemical index of alteration minus potassium (CIA-K) measured in the paleosol of interest
(Cotton and Sheldon, 2013), and a depth-to-carbonate accumulating horizon (updated in Breecker and Retallack, 2014). Efforts to
improve the precision of S(z) for application to paleosols is a focus of future research by the paleo-CO2 community. The
aforementioned values for a given succession of paleosols are applied to a Monte Carlo based model, PBUQ, which propagates
the uncertainty associated with all input parameters (Breecker, 2013), to derive paleo-CO2 estimates. Overall, this proxy works best
for past periods of high atmospheric CO2 or where concentrations of both atmospheric and soil-respired CO2 are low—i.e., when
the ratio of atmospheric CO2 to soil-respired CO2 (i.e., CO2/S(z)) is no less than 0.3 (Breecker, 2010). This avoids the complication
created by an imbalance in the parameters (soil-respired and atmospheric CO2) that govern the d13C value of total soil CO2, which
in turn is archived in the paleosol carbonates.

A second mineral-based proxy of paleo-CO2 is the d13C of soil-formed goethite (Fig. 1H), an iron oxyhydroxide (Yapp and
Poths, 1996; Yapp, 2004), with the potential for use of the aluminum oxide gibbsite (Schroeder and Melear, 1999; Tabor and Yapp,
2005). Similar to the paleosol carbonate proxy, for pedogenic goethite, the d13C value and mole fraction of Fe(CO3)OH is a
function of the concentration and d13C value of the CO2 proximal to the locus of goethite crystallization. But unlike the carbonate
proxy, carbon incorporated into the goethite solid solution can derive from either two-components or three-components soil
CO2 components, with the latter including CO2 from dissolved carbonate in the soil (Hsieh and Yapp, 1999; Tabor et al., 2004).
In addition to the aforementioned complications created by the influence of different processes on the soil CO2 d13C value, the
conditions that promote crystallization of pedogenic goethite (i.e., cool wet climates with fluctuating moisture availability) can
induce alternating oxidation and reduction reactions in the soil that lead to changes in the d13C values of the goethite that are not
predicted by the mass balance relationships applied to goethite-based paleo-CO2 reconstructions (Gulbranson et al., 2011). Despite
its potential, the goethite paleo-CO2 proxy is a more complicated system for paleo-CO2 reconstruction and has not been
widely used.

The third proxy is the occurrence of sodium carbonate mineral nahcolite in ancient alkaline lacustrine deposits (Fig. 1I), which
has been proposed as a paleo-CO2 proxy, given that it precipitates from continental saline alkaline water when a threshold
concentration of paleo-atmospheric CO2 is reached (Eugster, 1966; Lowenstein and Demicco, 2006; Jagniecki et al., 2015). The
nahcolite proxy has only been applied to the Eocene and unlike all other paleo-CO2 proxies, can only constrain minimal
CO2 concentrations, not absolute values (Lowenstein and Demicco, 2006; Jagniecki et al., 2015; Demicco and Lowenstein, 2019).
Current status of paleo-CO2 reconstructions

In this section we present recent advances made in the reconstruction of Cenozoic CO2 by an international consortium of
researchers, who recently published a data-model integrated record (Section “Current status of Cenozoic CO2”). We then present
an overview of our current understanding of pre-Cenozoic CO2 (66–400+ Ma) in the context of linkages to other Earth surface
processes and their interactions (Section “Current understanding of pre-Cenozoic CO2”). Subsections of Section “Current under-
standing of pre-Cenozoic CO2” focus on major intervals and events in Earth history. Section “Estimating paleo-CO2 with long-term
carbon cycle models” then compares the proxy record to different model-derived paleo-CO2 trends over the Phanerozoic, including
discussion of recent advances and future directions for modeling CO2. Section “Summary and future directions for paleo-Co2-
reconstruction” addresses the next steps needed to extend and expand recent advances in paleo-CO2 reconstruction and ultimately
build a next-generation Phanerozoic CO2 record.
Current status of Cenozoic CO2

For decades, compiling Phanerozoic paleo-CO2 estimates and curating the data based on published CO2 records was not a
communal effort, but individual researchers, foremost Dana Royer, curated a database collecting all published data in one database
(Royer et al., 2001, 2004, 2007; Beerling and Royer, 2011; Foster et al., 2017). This allowed the community to analyze their data in
context and encouraged a wide-reaching collaborative effort. In 2016, an international consortium of researchers (CenCO2PIP–The
Cenozoic CO2 Proxy Integration Project) formed, with expertise in all established terrestrial and marine paleo-CO2 proxies, and
jointly started an effort to rigorously document, vet, and, where possible and necessary, recalculate estimates of paleo-CO2 from raw
proxy data in order to conform with the latest proxy understanding. The first phase of this effort focused on the Cenozoic Era, i.e.,
the past 66 million years, and designed detailed templates for documenting paleo-CO2 estimates, including sampling details, raw
and auxiliary proxy data, constants, equations and methods used to collect proxy data and compute paleo-CO2. Data sheets of the
originally published estimates have been archived in the paleo-CO2 directory of NOAA’s National Climatic Data Center (NCDC)
and in Zenodo. Following the creation of the data ‘archive,’ the consortium vetted all published records based on their analytical
quality and whether uncertainty estimation was fully developed and comprehensive 95% confidence intervals were quantified.

https://zenodo.org/record/5777279
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To address uncertainties, the Cenozoic CO2 Proxy Integration Project collaboratively assessed and synthesized existing paleo-
CO2 records spanning the Cenozoic. CO2 and age uncertainties were updated as necessary, to consistently reflect propagated 95%
confidence intervals (CIs). CO2 records were categorized according to the community’s level of confidence in each estimate.

The research effort refining estimates of Cenozoic (66–0 Ma) fluctuations of CO2 concentrations was recently published
(The CenCO2PIP Consortium, 2023). Updated graphs and links to view and download the vetted data are available on the
CO2PIP project website (paleo-co2.org). The CenCO2PIP Consortium publication (2023) discusses challenges in reconstructing
past CO2 levels using proxies, describes eight different proxies (phytoplankton, boron proxies, liverworts, leaf gas exchange, leaf
carbon isotopes, stomatal frequencies, paleosols and nahcolite/trona) as well as the associated methods, all with evolving
assumptions. The resulting statistically modeled Cenozoic CO2 curve (Fig. 2), produced using a Bayesian inversion model, reveals
a robust relationship between CO2 and global temperatures during the Cenozoic Era (The CenCO2PIP Consortium, 2023) and
underscores the relevance of investigating paleo-CO2 and climate to the escalation of present atmospheric CO2 levels due to human
activities, in projecting potential future outcomes. This synthesis of Cenozoic CO2 facilitates comparison with observations of past
climate and ecosystem changes, allowing us to better identify CO2 thresholds and assess the sensitivity of Earth’s climate and
biosphere in response to anthropogenic perturbation. However, despite greatly enhancing our knowledge of Cenozoic CO2 and its
relationship with global temperature change and climate sensitivity, data gaps and inconsistencies persist, emphasizing the need
for further data collection to create additional comprehensive and community-vetted paleo-CO2 records. An overview of Cenozoic
CO2 evolution is provided below; for a comprehensive in-depth review see The CenCO2PIP Consortium (2023) and visit the
CO2PIP website (paleo-co2.org).

Cenozoic CO2 evolution is of particular interest to the paleoclimate research community, since during this period (66–0 Ma)
Earth’s geographical configuration and ecosystem composition approached that of the modern, with several intervals and transi-
tions that may be considered near future-climate analogues. Overall, comparison of the Cenozoic paleo-CO2 and climate records
exhibits strong correlation between them across timescales of 500-kyr to millions of years with an overall cooling trend interrupted
by transient climate change episodes (Fig. 2; The CenCO2PIP Consortium, 2023). The early Cenozoic hothouse was characterized
by overall high CO2 concentrations (�650 ppm), with peak values more than double that of present-day (>1000 ppm) during a
transient episode of highly elevated temperatures and CO2, the Paleocene–Eocene Thermal Maximum (PETM) (Zachos et al., 2001;
Huber and Caballero, 2011; Cramwinckel et al., 2018; Anagnostou et al., 2020). CO2 was up to 1600 ppm and global surface
temperatures �12 �C higher than present-day during the Early Eocene Climatic Optimum (EECO, �53–51 Ma) and then declined
to between 800 and 1100 ppm through the remaining Eocene, in tandem with global cooling. This trend was briefly interrupted by
another transient rise in pCO2 and warming at �40 Ma, the Mid Eocene Climatic Optimum (MECO) (Zachos et al., 2001;
Cramwinckel et al., 2018).

A decline in atmospheric CO2 to <600 ppm across the Eocene–Oligocene boundary (33.9 Ma) was associated with a climate
transition from themostly ice-free greenhouse world of the earlier Cenozoic to an icehouse world with extensive Antarctic glaciation
in the Oligocene (Hutchinson et al., 2021). Specifically, the new Cenozoic CO2 record suggests a glaciation threshold of
719 +180/−152 ppm (The CenCO2PIP Consortium, 2023). By�32 Ma (early Oligocene), CO2 had dropped to�550 ppm coinciding
with the onset of the evolution of the C4 carbon-concentrating mechanism in terrestrial vascular plants and their subsequent
diversification. With the exception of a brief rise in CO2 to a mean of 500 ppm during the middle Miocene Climatic Optimum
(MCO, �17–14 Ma), marking the last time (14.5–14 Ma) that CO2 concentrations were consistently higher than present-day,
PETM

EECO

MECO
EOT

MCO

NHG

Fig. 2 Statistical reconstruction of the community-vetted CO2 records (n ¼ 1673) over the Cenozoic Era. The paleo-CO2 curve includes 95% credible intervals and
is superimposed on the global mean surface temperature trend (blue and red vertical shading) over the past 66 million years, modeled using the data of Westerhold
et al., 2020. Major climate events are highlighted by abbreviations: PETM ¼ Paleocene Eocene Thermal Maximum; EECO ¼ Early Eocene Climatic Optimum;
MECO ¼ Middle Eocene Climatic Optimum; EOT ¼ Eocene/Oligocene Transition; MCO ¼ Miocene Climatic Optimum; NHG ¼ onset of Northern Hemisphere
Glaciation. Figure modified from The CenCO2PIP Consortium, Science 382: 6675 (2023).

https://www.paleo-co2.org/
http://paleo-co2.org
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atmospheric CO2 declined throughout the Neogene (23–2.6 Ma). This CO2 decline is associated with global cooling. CO2

and global surface temperature continued to decline into the full-blown ice age world of the Pleistocene (beginning at
�2.65 Ma), when CO2 dropped below 270 ppm and fluctuated between �200–280 ppm through the glacial-interglacial cycles
(Bereiter et al., 2015).
Current Understanding of pre-Cenozoic CO2

As we outline throughout this review, the paleo-CO2 data and model community is presently working on improving the quality
and accuracy of CO2 reconstructions and solving the data-model discrepancies that still exist (see Sections “Key principles” and
“Summary and future directions for paleo-co2 reconstruction”). To date, only Cenozoic CO2 records have undergone the necessary
quality vetting and selection process, whereas updating the pre-Cenozoic CO2 record is an ongoing effort by the CO2PIP
community (https://paleo-co2.org/co2pip). At this time, the cumulative proxy archive for the Phanerozoic, composed of over
6000 published paleo-CO2 estimates (Fig. 3), provides a broad-scale perspective of how CO2 concentrations varied over the past
half billion years. To date, this archive has been initially curated using criteria defined by the Cenozoic CO2PIP Consortium (color
symbols on Fig. 3) and used to derive the currently available best-estimate of Phanerozoic CO2 (Foster et al., 2017). Individual
CO2 records or collections of contemporaneous records provide insight into relative changes in CO2 during past abrupt and/or
major environmental and ecosystem perturbations. Section “Summary and future directions for paleo-CO2 reconstruction”
discusses ongoing efforts to further vet and modernize the pre-Cenozoic portion of this archive.

Below we give an overview of pre-Cenozoic Phanerozoic CO2 as currently understood, placing CO2 evolution in an Earth
System/Carbon cycle context—i.e. the interaction of processes that link the atmosphere, biosphere, hydrosphere and lithosphere
and govern CO2. We focus mostly on terrestrial proxies, which are more numerous in the pre-Cenozoic and note that marine
(phytane) and terrestrial proxies largely agree when coeval.
Paleozoic CO2 (�541–252 Ma)
Proxy-based CO2 estimates prior to 450 Ma (Cambrian to mid-Ordovician) are lacking but geochemical models consistently predict
CO2 of several 1000s of ppm. Phytane-based estimates indicate Ordovician CO2 of 300—700 ppm (Fig. 3; Witkowski et al., 2018).
The precipitous decrease in CO2 through the first �100 Myr of the Paleozoic has been attributed to the evolution and expansion of
the earliest land plants, through enhanced oxidative silicate weathering and global increase in organic carbon burial (Lenton et al.,
2016; Dahl and Arens, 2020).
Fig. 3 Phanerozoic compilation of paleo-atmospheric CO2 estimates with initial vetting of data. All proxy-based CO2 estimates for the Phanerozoic (4077 data
points) are identified by proxy type on the plot by symbol shapes and colors (see legend for details). For the Cenozoic, the colored symbols indicate the highest quality
Cenozoic estimates vetted and updated by the CenCO2PIP Consortium. Colored symbols for the pre-Cenozoic estimates conform to modern proxy understanding,
whereas estimates shown in gray are considered unreliable in their current form, either because of analytical concerns, because they are under-constrained with regard
to modern proxy understanding, or because their uncertainties are not fully quantifiable. The Phanerozoic system periods are indicated in the colored bar at the top of the
graph: C ¼ Cambrian, O ¼ Ordovician, S ¼ Silurian, D ¼ Devonian, C ¼ Carboniferous, P ¼ Permian, Tr ¼ Triassic, J ¼ Jurassic, K ¼ Cretaceous, Pg¼ Paleogene,
Ng¼ Neogene. Note that the figure is cropped at 5000 ppm CO2 and does not display 25 (0.6%) of the unreliable CO2 estimates that exceed this limit.

https://paleo-co2.org/co2pip
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The geochronologically oldest stomatal proxy-based CO2 estimates are early Devonian (�419.2–393.3 Ma) and based on the
stomatal densities of pre-vascular ‘rhynophytic’ sporophytes: early free-sporing land plants with anatomical features intermediate
between those of bryophytes and tracheophytes. Concentrations of �2000 to �3000 ppm are estimated (Fig. 3) using the stomatal
ratio method (McElwain, 1998), as well as an early (Roth-Nebelsick and Konrad, 2003) and more recent (Franks et al., 2014)
version of a leaf gas-exchange model. Phytane-based CO2 estimates for the Devonian record a continued drop in CO2 to values of
300–500 ppm by the close of the Devonian and earliest Carboniferous (�350 Ma; Fig. 4). Paleosol-carbonate proxy estimates of
CO2 for this interval (Mora et al., 1996; Driese et al., 2000; Cox et al., 2001) also record the long-term CO2 decline with values
within the range defined by the phytane proxy estimates.

By the middle Carboniferous (�330 Ma), CO2 had decreased to overall low concentrations (Fig. 3) coincident with the onset of
the late Paleozoic ice age (LPIA, �340–260 Ma; Montañez et al., 2007; Fielding et al., 2008). Relatively few paleo-CO2 estimates
exist for the early Carboniferous (359–323 Ma) but leaf-fossil proxy-based reconstructions using the stomatal ratio of early conifers
(McElwain, 1998), a transfer function applied to arborescent lycopsids (Beerling, 2002), and leaf gas-exchange modeling
(Franks et al., 2014) indicate CO2 of �300–400 ppm during this time. More recent phytane-based CO2 estimates
(250–400 ppm) further support low concentrations for the early Carboniferous (Witkowski et al., 2018). Less robust paleosol
carbonate proxy estimates (category 2 based on the criteria of The CenCO2PIP Consortium, 2023), however, exhibit a much larger
range for this interval (negative to �2000 ppm; Mora et al., 1996; Ekart et al., 1999).

A much higher density of paleo-CO2 estimates exist for the latter half of the Carboniferous (323–298.9 Ma) and Permian
(298.9–251.9 Ma) primarily based on leaf fossil and paleosol carbonate proxies (Fig. 3). Overall proxy estimates define a large range
for CO2 (<100 to�1000 ppm) throughout this interval (Mora et al., 1996; Ekart et al., 1999; Ghosh et al., 2005; Lucas and Tanner,
2021). Two multi-proxy CO2 reconstructions (Montañez et al., 2016; Richey et al., 2020) based on stomatal densities and leaf-gas
exchange modeling of seed ferns and contemporaneous paleosol carbonates, however, better constrain the evolution of CO2 over a
40 Myr interval of the late Carboniferous through early Permian (312–275 Ma). These records reveal eccentricity-scale (105-year)
rhythms of CO2 fluctuations (Montañez et al., 2016) characterized by �500–700 ppm during interglacials and � 160–300 ppm
during glacials with an interval mean of 390 ppm �130 ppm, mirroring the glacial-interglacial shifts of the Pleistocene ice ages
(Montañez et al., 2016; Richey et al., 2020). On the million-year scale, CO2 decreases through the latest Carboniferous into the
earliest Permian reaching a 10-Myr CO2 nadir (�175–360 ppm) in the earliest Permian (298.9–290.1 Ma); following the nadir,
CO2 increases through to the close of early Permian. A short term (<300 ka in duration) doubling of CO2 at 304 Ma coincides with
an independently identified global warming event, biodiversity nadir, and �20% of areal extent of seafloor anoxia (Chen et al.,
2022). Nadirs of CO2 in the late Carboniferous coincide with geological evidence of maximum glaciation extent (Montañez, 2022)
and the radiation of glossopterids and gigantopterids (McLoughlin, 2012; Zhou et al., 2017). The early Permian CO2 increase
coincides with the onset of widespread volcanism and evidence for increased ice sheet instability (Richey et al., 2020;
Montañez, 2022).

Proxy-based records suggest the rise in CO2 may have continued through the Permian, likely reaching peak values across the
Permian-Triassic boundary and into the early Triassic (Fig. 3). All CO2 estimates for this interval (<400 to �1800 ppm), and based
on the phytane, vetted leaf-gas exchange, liverwort and paleosol carbonate proxies, overlap (Fig. 3). Furthermore, a high-resolution
plant d13C proxy record across the Permian-Triassic boundary (P–Tr, 251.9 Ma) defines a rapid rise in CO2 (within 75 kyr) from
latest Permian background concentrations of 400–2500 ppm (Wu et al., 2021). Notably, CO2 estimates based on stomatal
frequency and leaf-gas exchange proxies indicate much lower pre-P–Tr boundary CO2 concentrations (300–500 ppm) (Li et al.,
2019). The P–Tr boundary archives the largest mass extinction event in Earth’s history leading to extinction of at least 80% and
perhaps as much as 96% of all marine species, as well as devastating loss of biodiversity and ecosystem collapse on land (Benton
and Twitchett, 2003; Looy et al., 2001; McElwain and Punyasena, 2007; Vajda and McLoughlin, 2007; Stanley, 2016; Vajda et al.,
2020). The proposed rapid CO2 rise across the P–Tr boundary is coincident with a 4–6% negative carbon isotope excursion (d13C)
detected in marine and terrestrial deposits globally, hypothesized to record amplification of the transient increase in CO2 by a
catastrophic release of methane from gas hydrate deposits caused by initial climate warming, ultimately leading to a 6–8 �C rise in
global temperatures.
Mesozoic CO2 (252–66 Ma)
The Triassic period
Recovery from the environmental impact of the P–Tr was slow—at the million year-scale—through the Early and Middle Triassic
(251.9–237 Ma). Estimates of atmospheric CO2 through this period range from <100 to 1800 ppm, primarily based on paleosol
carbonate and phytane proxy data (Fig. 4; Ekart et al., 1999; Ghosh and Bhattacharya, 2001; Ghosh et al., 2005; Prochnow et al.,
2006; Witkowski et al., 2018). Abundant proxy CO2 data exists for the Late Triassic (237–201.3 Ma) but are poorly constrained to a
range of <100 to �4000 ppm (Fig. 3). Distinct temporal trends in CO2 exist, however, documenting rapid rises in paleo-CO2

associated with the emplacement of large igneous province or magmatic arc volcanic activity during the break-up of supercontinent
Pangaea (e.g., McElwain et al., 1999; Cleveland et al., 2008; Schaller et al., 2011; Schaller et al., 2015; Steinthorsdottir et al., 2011;
Nordt et al., 2015). CO2 estimates based on the paleosol carbonate, phytane, and stomatal frequency proxies all indicate elevated
concentrations during the Late Triassic and a transient doubling across the Triassic-Jurassic (Tr–J) boundary (201.2 Ma). Stomatal
frequency (Beerling et al., 1998; McElwain et al., 1999; Steinthorsdottir et al., 2011; Slodownik et al., 2021) and phytane-
based (Witkowski et al., 2018) estimates for this interval, however, define a narrower range of CO2 (�800–1000 ppm and
900–1200 ppm, respectively) than indicated by paleosol carbonate proxy estimates (negative to �3500 ppm).
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The Triassic-Jurassic boundary
The rapid CO2 rise across the Tr–J boundary was potentially the most significant of the Mesozoic and is attributed to the
emplacement of the most extensive continental large igneous province (LIP), the Central Atlantic magmatic province (CAMP;
Marzoli et al., 2018), leading to global warming, environmental degradation and culminating in the Triassic–Jurassic mass
extinction. Pre-Tr–J event estimates of CO2 vary from 500 ppm to �2000 ppm, with higher estimates based on the paleosol
carbonate proxy (Ghosh and Bhattacharya, 2001; Tanner et al., 2001; Driese and Mora, 2002; Cleveland et al., 2008; Schaller et al.,
2011; Schaller et al., 2015; Whiteside et al., 2015), and lower estimates based on the stomatal frequency (McElwain et al., 1999;
Steinthorsdottir et al., 2011) and the liverwort (Fletcher et al., 2008) proxies, albeit with two stomatal frequency-based records
(Bonis et al., 2010; Wu et al., 2016) suggesting possible maximum pre-event CO2 values of up to 2500 ppm. That said, all
CO2 reconstructions across the Tr–J event indicate an approximate doubling of CO2 across the Tr-J boundary that coincided with
a 3–5% CIE (Hesselbo et al., 2002; Bacon et al., 2011), hypothesized to involve methane release as well as volcanic CO2 (McElwain
et al., 1999). The consequent global warming of �5 �C and environmental degradation, including volcanic SO2 pollution
(Steinthorsdottir et al., 2018) and widespread wildfires (Belcher et al., 2010), led to significant turnover and extinction of both
marine and terrestrial organisms.

The Jurassic period
CO2 decreased in the Early Jurassic (Hettangian–Toarcian; 201.3–174.2 Ma) to concentrations of 500–1100 ppm based on
stomatal frequency (Beerling et al., 1998; McElwain et al., 1999; Chen et al., 2001; Barbacka, 2011; Steinthorsdottir et al., 2011;
Steinthorsdottir and Vajda, 2015; Pienkowski et al., 2020), phytane (Witkowski et al., 2018) and liverwort (Fletcher et al., 2008)
proxies (Fig. 3). Paleosol-carbonate based CO2 estimates suggest a higher range of �1000 to >4000 ppm (Ghosh et al., 2005;
Schaller et al., 2011; Guitierrez and Sheldon, 2012; Li et al., 2020).

Atmospheric CO2 generally remained in the 500 to�1300 range through the Jurassic with the exception of the Toarcian Oceanic
Anoxic Event (TOAE, �183 Ma), a major perturbation of the global carbon cycle that extended 100 s of 1000s of years and led to
major changes in ocean and climate conditions. The TOAE is hypothesized to have been caused by the release of thermogenic
methane owing to the intrusion of Karoo-Ferrar magma into Gondwanan coal (McElwain et al., 2005; Jenkyns, 2010). Stomatal
density estimates show an initial drawdown of CO2, followed by an abrupt transient increase of >1300 ppm, leading briefly to
CO2 of>2000 ppm (McElwain et al., 2005), against background levels of�1000 ppm (Zhou et al., 2020). A Toarcian transient rise
in CO2 of similar magnitude and from background levels of �1000–1300 ppm is also archived in paleosol carbonates (Li et al.,
2020). Post-Toarcian OAE (174.1 to �145 Ma) CO2 (�1000–1300 ppm) may not have returned to pre-event concentrations
(McElwain, 1998; Beerling et al., 1998; Chen et al., 2001; Beerling and Royer, 2002; Retallack, 2009; Yan et al., 2009; Wu
et al., 2016).

The Cretaceous period
The proxy-derived trend in CO2 for the Cretaceous Period (145–66 Ma), based on stomatal frequency, leaf-gas exchange, land plant
d13C, liverwort, phytane, and paleosol-carbonate proxies, is of rising concentrations from intermediate background levels
(�500–1000 ppm) of the Jurassic to peak values in the mid-Cretaceous (�120–95 Ma; up to >2000 ppm) before declining to
concentrations of mostly <1000 ppm a few million years prior to the close of the Cretaceous (Fig. 3). Overall, CO2 estimates
derived from stomatal proxies (small and larger gray squares on Fig. 3) yield overlapping to up to 50% higher values than those of
the curated data (color symbols) derived using the phytane, liverwort, leaf-gas exchange, and stomatal frequency proxies.
In contrast, CO2 estimates based on the land plant d13C for this interval (gray triangles) are markedly lower (�100–400 ppm)
than those indicated by all other proxy estimates, whereas CO2 derived using the paleosol-carbonate proxy (gray circles; Nordt et al.,
2003; Ghosh et al., 2005; Leier et al., 2009; Lee II., 1999; Lee II. and Hisada, 1999; Mortazavi et al., 2013; Li et al., 2014; Suarez et al.,
2021) define a much larger range than the curated data (color symbols on Fig. 3).

The curated data suggest moderate CO2 (500–800 ppm) in the very earliest Cretaceous (Fig. 3; Fletcher et al., 2008; Witkowski
et al., 2018) and support transiently lowered temperatures across the Jurassic–Cretaceous boundary independently inferred from
organic matter carbon isotope records (e.g. Price et al., 2016). Moreover, stomatal frequency- and paleosol carbonate-based
estimates generally indicate moderately low CO2 (<300 to �1000 ppm, with a subset of paleosol carbonate-based values up to
2500 ppm) in the Early Cretaceous (Berriasian through Hauterivian; 145–130 Ma) (Jing and Banian, 2018; Robinson et al., 2002;
Hong and Lee, 2012; Huang et al., 2012; Li et al., 2016). Low- to moderate-global surface temperatures are consistent with overall
cooling in the first half of the Early Cretaceous. CO2 likely increased through the second half of the Early Cretaceous
(Hauterian-Albian (�132.6–100.5 Ma) with stomatal frequency-based CO2 of �600–1500 ppm (Haworth et al., 2005; Chen
et al., 2001; Sun et al., 2007; Passalia, 2009; Jing and Banian, 2018) and paleosol carbonate-based estimates of 300–1300 ppm
(Hong and Lee, 2012) and up to 2000 ppm (Li et al., 2014).

Several Oceanic Anoxic Events (OAEs) were superimposed on the overall elevated CO2 of the Cretaceous Period, with the most
notable of these events being OAE1a in the early Aptian (�120 Ma) and OAE2 at the Cenomanian-Turonian boundary (�94 Ma)
(Arthur et al., 1988; Turgeon and Creaser, 2008; Jenkyns, 2010; Huber et al., 2018). It has long been considered that the burial of
large amounts of carbon led to reduced CO2 during these events indicated by positive carbon isotope excursions, and transiently
lowered temperatures globally (Arthur et al., 1988; Li et al., 2014; Huber et al., 2018). For OAE1a (120 Ma), paleosol carbonate
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proxies indicate an initial relatively rapid rise in CO2 from background values of �800 to up to �1300 ppm and a subsequent
longer-term decline in CO2 concentrations to �500 ppm by the end of the Albian (Ludvigson et al., 2015). Moderate background
CO2 (600–800 ppm) by the close of the Early Cretaceous (�100 Ma) is indicated by pedogenic carbonate (Ludvigson et al., 2015)
and stomatal frequency (Du et al., 2016) proxies, supporting an independently inferred decrease in temperatures for this interval
(Huber et al., 2018).

Higher-resolution leaf fossil proxy-derived CO2 records exist for two subsequent OAE events. For the mid-Cretaceous OAE1d,
which marks the Albian-Cenomanian boundary and the end of the Early Cretaceous (100.5 Ma), stomatal frequency- and leaf-gas
exchange-based estimates indicate background values of 500–600 ppm and a CO2 peak of �840 ppm towards the end of the event
(Richey et al., 2018). For OAE2 that marks the Cenomanian-Turonian boundary (93.9 Ma), stomatal frequency-based estimates
indicate that CO2 increased from background values of �370 ppm to �500 ppm (+400/−180 ppm) multiple times before
decreasing by up to 26% by the end of the event (Barclay et al., 2010). Both OAE records document a complex relationship to
the well-documented CIEs including defining a lag between the d13C excursion and the CO2 increase (Richey et al., 2018). Relevant
to advancing the science of paleo-CO2 reconstruction, both OAE1d and OAE2 records used leaf fossil cuticle fragments of Lauraceae,
an angiosperm, to reconstruct paleo-CO2. The relative trends in CO2 are likely robust, but for both OAE records, the significantly
lower background and maximum CO2 estimates relative to other stomatal CO2 reconstructions built using Ginkgoales and
Coniferales fossils most probably reflects that Lauraceae (and perhaps most angiosperms) underestimate paleo-CO2 (see e.g.,
Kürschner et al., 2008; Steinthorsdottir et al. 2016a, 2016b, 2019a, 2019b). For OAE1d, calibrating the rise in CO2 using late Albian
background CO2 of 800–1000 ppm (Jing and Banian, 2018) would translate to peak values (�1100–1400 ppm) at 100.5 Ma
more compatible with CO2 estimates for OAE1a (Ludvigson et al., 2015) and post-OAE1d CO2 more on par with stomatal
frequency-based CO2 estimates of �1000 ppm made using gymnosperms (Mays et al., 2015, Ginkgoales; Du et al., 2016,
Coniferales). By the close of the Early Cretaceous (latest Albian), both leaf fossil- (Richey et al., 2018) and paleosol
carbonate-based proxies indicate CO2 of 600–500 ppm (Ludvigson et al., 2015).

By the mid-Late Cretaceous (Santonian and Campanian (86.3–72.1 Ma), stomatal frequency proxies indicate a decline in
CO2 from peak concentrations of �1000 ppm and possibly 2800 ppm of the mid-Cretaceous (Cenomanian and Turonian) to
�600–800 ppm (Quan et al., 2009; Wan et al., 2011). This trend (Fig. 3) is similarly suggested by paleosol-carbonate proxies,
albeit at overall higher CO2 concentrations (from 1400/1600 to �500 ppm, Hong and Lee, 2012; 1800/2800 to 1100/1900 ppm,
Ghosh et al., 2005; 1200–780 ppm, Nordt et al., 2002;�2500–1000 ppm, Zhang et al., 2018). Stomatal-based CO2 concentrations
of �550 of 600 ppm (see section below) for the final stage of the Cretaceous (Maastrichtian, 72.1—66 Ma) indicate that CO2

continued to decline toward the end of the Cretaceous (Beerling et al., 2002; Steinthorsdottir et al., 2016b; Milligan et al., 2019).
This continued decline is further suggested by paleosol-carbonate CO2 estimates (Andrews et al., 1995; Nordt et al., 2002, 2003;
Zhang et al., 2019c) and a limited number of phytane-based estimates (Witkowski et al., 2018) and is compatible with inferred
cooling for the late-Late Cretaceous (Maastrichtian (�69 Ma); Huber et al., 2018).
The Cretaceous/Paleogene (K–Pg) boundary interval
The close of the Mesozoic Era (66 Ma) archives the most recent of Earth’s five major extinctions, characterized by the obliteration of
the dinosaurs and loss of �75% of all living species. Although the Chicxulub asteroid that impacted the Yucatan Peninsula was the
principal driver of this mass extinction (Alvarez et al., 1980; Schulte et al., 2010; Hull et al., 2020; Morgan et al., 2022), Deccan trap
volcanism, which began a few 100,000 years before, is hypothesized to have primed the ecosystems for subsequent asteroid-related
negative environmental effects (Keller, 2014; Renne et al., 2015; Zhang et al., 2018). Proxy-based estimates indicate a moderate to
substantial increase in CO2 across the K–Pg boundary interval. Curated leaf gas-exchange proxy (Milligan et al., 2019; red squares on
Fig. 3) and liverwort proxy (Fletcher et al., 2008; green triangles on Fig. 3) estimates indicate a �200–500 ppm increase in
CO2 across the K–Pg boundary from latest Cretaceous background values of �600 to �900 ppm (e.g., Steinthorsdottir et al.,
2016b). Marine boron isotope-based estimates (500 and 1900 ppm) also record a CO2 rise in this interval but of several-fold (blue
inverted triangles on Fig. 3). Paleosol carbonate-based estimates, considered of category 2 reliability (The CenCO2PIP Consortium,
2023), also indicate a moderate increase in CO2 (a few 100 ppm) across the boundary interval (Nordt et al., 2002). Notably, a
high-resolution paleosol carbonate proxy record (Zhang et al., 2018) reveals a �500 ppm rise in CO2 immediately prior
(66.4–66.3 Ma) to the K-Pg boundary, attributed to pre-boundary Deccan volcanism, followed by a transient drop in CO2 to
�750 ppm at the K–Pg boundary. Plant fossil-based estimates further suggest low CO2 (�400 ppm) into the earliest Paleocene
(earliest Danian) (Steinthorsdottir et al., 2016b).
Estimating paleo-CO2 with long-term carbon cycle models

Key principles

Over multi-million-year timescales, the concentration of CO2 in the atmosphere is largely controlled by a handful of processes that
act to transfer carbon between crustal (sediments and rocks) and surficial (atmosphere, ocean, land surfaces) reservoirs; this system
is defined as the long-term carbon cycle (Fig. 4). If the rate of these processes over time can be determined, then the trajectories
of atmospheric CO2 can be quantified on geologic timescales (Fig. 4).
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Fig. 4 The Atmosphere-Ocean-Sediment carbon cycle. Red arrows show sources to the atmosphere or ocean and blue arrows show sinks out of the atmosphere
or ocean. Silicate weathering transfers 2 mol of CO2 into solution for each mole of divalent cation (e.g. Ca) whereas carbonate weathering transfers one mole
of CO2 from the atmosphere and one from the carbonate rock. Carbonate precipitation removes one mole of carbon into sediments but releases one mole of CO2,
thus silicate weathering followed by carbonate burial is a net sink of CO2, whereas carbonate weathering followed by carbonate burial is not (see Proxy
approches to paleo-CO2 reconstruction section). Seafloor weathering follows the same overall process as silicate weathering followed by carbonate burial, but
occurs entirely locally in hydrothermal systems, so is also a net sink for CO2. Organic carbon burial is a net sink for CO2, whereas weathering of organic carbon
in sediments, as well as degassing of carbon from either organics or carbonates, are sources.
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The key processes were enumerated in 1845 by French chemist and mining engineer (Ebelmen, 1845; see also Berner and
Maasch, 1996), with more modern treatments by Urey (1952), Garrels and Perry (1974), Holland (1978), Walker et al. (1981),
Berner et al. (1983), Garrels and Lerman (1984), and Berner (1991, 2004). There are two main sinks for CO2 on multi-million-year
timescales. The first, mineral-based, is the formation and burial of carbonates whose ionic components (Ca2+, Mg2+, and HCO3

−)
derive from the weathering of Ca and Mg silicate rocks (equations 1–3).

Weathering of a generalized calcium silicate:

2CO2 + H2O + CaSiO3 ! Ca2+ + 2HCO3
− + SiO2 (1)

Precipitation of calcium carbonate:

Ca2+ + 2HCO3
− ! CaCO3 + CO2 + H2O (2)

Sum of (1) and (2):

CO2 + CaSiO3 ! CaCO3 + SiO2 (3)

The second major sink for CO2 is the burial of organic matter (on land or in the ocean). This process can be conceptualized as
‘geo’-photosynthesis (Eq. 4 from left-to-right).

CO2 + H2O $ CH2O + O2 (4)

Both of these burial processes physically remove carbon from the Earth’s surface until, tens-to-hundreds of millions of years later,
tectonic forces return the carbon to the atmosphere via volcanism or chemical weathering of carbonates and oxidation of
organic-rich rocks and sediments. (Eq. 4 from right-to-left: ‘geo’-respiration).

The processes that control the long-term evolution of CO2 are distinct from their short-term control. Most noticeably, the more
familiar short-term carbon cycle (< 103 year), which involves the transfer of carbon within the surface Earth system (e.g.,
photosynthesis, size of the terrestrial biosphere, and the efficiency of the oceanic biological pump), is not directly relevant to the
long-term carbon cycle and its multi-million-year control of atmospheric CO2. This is because any large change in the size of these
surface reservoirs (e.g., soil, marine inorganic carbon) cannot be sustained over geologically relevant timescales and can be assumed
to be in quasi-steady state (Berner, 2004). For example, a sustained increase in marine productivity would deplete nutrient supply in
the global ocean and become self-limiting long before millions of years of carbon burial could occur. As a result, the short-term
carbon cycle dominates the control of atmospheric CO2 over timescales of approximately�104 year and the long-term carbon cycle
for timescales of �105 years.
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Key models

Berner et al. (1983) applied these key principles to quantify multi-million-year patterns in CO2 concentration. Berner and
colleagues subsequently expanded and refined their original studies into the GEOCARB family of models (after GEOlogical
CARBon; Berner, 1991, 1994; Berner and Kothavala, 2001; Berner, 2004, 2006a, 2006b, 2008, 2009; Royer et al., 2014; Krause
et al., 2018; Mills et al., 2023). In these models, inputs of CO2 to the surface system through volcanism are controlled by
reconstructions of global tectonic degassing (typically related to seafloor spreading rates), and weathering inputs tend to rely on
a simple approximation of global average surface temperature and global runoff rates. Burial of carbonates is related to the
weathering inputs of Ca and Mg cations. The framework for computing organic carbon burial is an isotopic mass balance, where
the masses and stable isotopic compositions of carbon in the surface Earth system at a given time in the past are related to the flux
and isotopic values of carbon moving into and out of the system (Berner, 2004). Tracking C isotopes is helpful because many of the
major reservoirs have distinct isotopic compositions, and photosynthesis drives isotopic fractionation. A sulfur isotope mass
balance is also used in the more recent GEOCARBSULF models and is primarily useful for constraining atmospheric
O2 variations driven by burial and weathering of reduced sulfur species (e.g., pyrite), so is therefore not emphasized here.

Alternatively, the COPSE (after Carbon, Oxygen, Phosphorus, Sulfur and Evolution; Bergman et al., 2004; Lenton et al., 2018)
and MAGic (after Mackenzie, Arvidson, Guidry interactive cycles; Arvidson et al., 2006) models do not use carbon and sulfur
isotopes as inputs, but instead compute burial fluxes of pyrite and organic carbon via independent estimates of biological
productivity. Estimates of CO2 with these models tend to be less constrained, but a key advantage is that they simulate d13C and
d34S, which can then be compared to d13C and d34S records measured in mineral and fossil organic archives. This provides a strong
iterative framework for better understanding the underlying controls of atmospheric CO2, but has less utility in providing a ‘best
guess’ prediction for ancient CO2 levels. The GEOCARBSULFOR model splits the difference, using d13C as an input but not d34S
(Krause et al., 2018).
Key updates

Royer et al. (2014) identified two areas in the GEOCARBSULF model that contribute the most uncertainty to estimated CO2:
(1) climate sensitivity and (2) the temperature-dependence of silicate weathering reactions in the absence of a plant biosphere in the
earlier Phanerozoic (e.g., Berner, 1997; Lenton et al., 2012; Quirk et al., 2015). Global ‘General Circulation’ physical climate models
(GCMs) are typically used to inform input decisions about climate sensitivity. Most of these climate models do not incorporate
slower feedbacks (e.g., dynamics of continental ice sheets), which is a problem for long-term carbon cycle models that integrate
over millions of years. Importantly, it is well established that a climate sensitivity that includes both fast and slow feedbacks
(“Earth System Sensitivity”—ESS) is typically higher than a fast-feedback-only climate sensitivity (Hansen et al., 2008; Lunt et al.,
2010; Rohling et al., 2012; Royer, 2016; The Cenozoic CO2 Proxy Integration Project, 2023). GEOCARB and GEOCARB-style
models can be inverted to solve for the value of climate sensitivity that minimizes the misfits to CO2 proxy data; these analyses also
support elevated Earth System Sensitivities, particularly during glacial periods (Royer et al., 2007; Park and Royer, 2011;
Krissansen-Totton and Catling, 2017; Wong et al., 2021). As such, most recent implementations of long-term carbon cycle models
adopt higher values of climate sensitivity (e.g., Mills et al., 2019; Marcilly et al., 2021).

In the original GEOCARB model (publications up to Berner, 2008), the factors controlling chemical weathering (temperature,
soil moisture, vegetation type, topography, etc.) were considered at the global scale; that is, zero-dimensional and not spatially
resolved—a single value for the entire Earth surface. This is problematic: for example, relief (e.g., mountain building) is expected to
increase chemical weathering via faster exhumation of fresh minerals, but only if there is sufficient soil moisture, whereas chemical
weathering in low-relief regions mantled by thick, mature soil profiles is considerably dampened (Brantley et al., 2023). There is a
clear need to couple spatially-resolved weathering and climate models to long-term carbon cycle models (see Goddéris et al., 2023
for a history on this topic); one example of this approach is the GEOCLIMmodel (after GEOlogical timescales CLIMate; Donnadieu
et al., 2004, 2006), which dynamically computes a steady state long-term climate for a given period of Earth history based on a
spatial weathering module and outputs of a coarse-resolution GCM. To incorporate this approach into GEOCARBSULF, Royer et al.
(2014) used spatially-resolved estimates of runoff and mean temperature of land surfaces undergoing chemical weathering from
22 simulations of GEOCLIM spanning the Phanerozoic (Goddéris et al., 2012) as inputs to drive GEOCARB (see https://doi.org/10.
6084/m9.figshare.902207 for R code to run this GEOCARB model); Marcilly et al. (2021) later updated these two inputs based on
improved paleogeographic reconstructions (but using an approximation to drive climate rather than a CGM) and applied them to
GEOCARB. In a time-specific application, Richey et al. (2020) used the GEOCLIMmodel to resolve a late Paleozoic climate paradox
defined by a protracted period (10 Myr) of very low CO2 (<300 ppm) in the earliest Permian inferred from proxies. The paradigm
arises given that the CO2 nadir postdates the period of peak silicate weathering rates of the Himalayan-scale highlands of
supercontinent Pangaea and is contemporaneous with pantropical aridification and onset of geographically widespread magma-
tism, both drivers of increased atmospheric CO2. Modeled steady state CO2 estimates for the 40-Myr period that account for spatial
variability of mafic vs. felsic silicate weathering, compare well with the CO2 proxy estimates and align with the GEOCARBSULFOR
values for this period (Mills et al., 2023) when combined with the weathering and degassing inputs from Marcilly et al. (2021)
(Fig. 5c).

https://doi.org/10.6084/m9.figshare.902207
https://doi.org/10.6084/m9.figshare.902207


Fig. 5 Key changes to long-term carbon cycle models in the last ten years. (A) Parameterization of the fraction of land area undergoing chemical weathering,
scaled to the present-day (fAw/fA). Royer et al. (2014) introduced this factor; earlier versions have an assumed time-invariant value of 1 (black line).
(B) Parameterization of tectonic degassing, scaled to the present-day (fSR). (C) Estimates of CO2. GEOCARBSULFvolc is the version of the GEOCARB model
(Berner, 2006b, 2008) presented in the last Treatise chapter on atmospheric CO2 and O2 (Royer, 2014). GEOCARBSULFOR (Krause et al., 2018) is the latest version
of the GEOCARB model. Here we combine the simulation presented in Mills et al. (2023) with the weathering and degassing inputs of “M12” presented in
Marcilly et al. (2021) (blue line; blue envelope captures 95% of the 5000 simulations). The SCION model (Mills et al., 2021), which couples COPSE with GEOCLIM, is
shown in orange, whereas the SCION model with the weathering and degassing inputs of M12 (Marcilly et al., 2021) is shown in pink. The CO2 proxy estimates
shown as gray open circles are the subset that, at present, does not require any revision (identical to the colored symbols in Fig. 3).
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There is a strong trajectory in long-term carbon cycle modeling towards a spatially-explicit treatment of chemical weathering.
Indeed, Mills et al. (2021) recently integrated the GEOCLIM climate module with COPSE in a coupled model called SCION (Spatial
Continuous IntegratiON) which is able to dynamically integrate the 3D steady state climate over Phanerozoic timescales, rather
than being restricted to ‘snapshots’ for a given continental configuration. This still does not represent a complete coupling between
climate and the long-term carbon cycle, because the 3D climate is an interpolated steady state taken from a set of climate model
runs, rather than the climate model running alongside the carbon cycle model. Given that even simple GCM typically take days to
weeks to run simulations of �10,000 years, it is unlikely that a true dynamical coupling over geological time will be possible
without a major step change in computational resources or techniques. However, with a range of more detailed systematic global
climate model simulations becoming available, for example the 109 simulations from Valdes et al. (2021; one per Phanerozoic
stage and currently being run to include water oxygen isotopes), steady state couplings like those employed in GEOCLIM and
SCION could significantly improve in the future.
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Another aspect of long-term carbon cycle modeling with rapid development in the last decade is tectonic degassing (e.g.,
volcanism). Originally, degassing was scaled from reconstructed seafloor spreading rates (and, for times older than the oldest intact
seafloor, spreading was inferred from reconstructions of sea level—representing changing ridge volumes). There are now many
models for the Phanerozoic patterns of rifting (including continental rifts), subduction (and its interaction with carbonate
platforms), and arc volcanism, which all contribute to tectonic degassing (e.g., Lee et al., 2013; McKenzie et al., 2016; Pall et al.,
2018; Domeier and Torsvik, 2019; Macdonald et al., 2019; Müller et al., 2022). These revised inputs are now becoming standard in
long-term carbon cycle model simulations of CO2 (e.g., van der Meer et al., 2014; Brune et al., 2017; Marcilly et al., 2021; Mills
et al., 2021).
Key patterns

Fig. 5A compares two newer CO2 simulations against the GEOCARBSULFvolc benchmark (Berner, 2006b, 2008) presented in the
2014 Treatise (Royer, 2014), all compared to proxy-estimates of paleo-CO2. The GEOCARBSULFOR (Krause et al., 2018)
simulation is based on the latest version (https://github.com/Alexjkrause; accessed June 2023) presented in Mills et al. (2023)
combined with the updated weathering and degassing inputs associated with “Model 12” (M12) fromMarcilly et al. (2021). In this
model, CO2 during the Permian-to-Jurassic is higher than in Berner (2006b, 2008) because the revised fraction of land area
undergoing chemical weathering is lower (fAw/fA; Fig. 5B) and the revised rate of tectonic degassing is higher (fSR; Fig. 5C). These
higher CO2 estimates are more in keeping with the proxy evidence (Fig. 5A), largely erasing a previous model-proxy mismatch.

The SCION simulation (Mills et al., 2021), based on the latest version V1.1.6 (https://github.com/bjwmills), predicts higher
CO2 than the GEOCARB simulations for much of the Phanerozoic. Up until 200 Myr ago, this difference is largely due to higher
prescribed tectonic degassing (Fig. 5C), which is based on reconstructed slab fluxes and subduction zone lengths from plate models.
Indeed, when SCION is run with the degassing input from M12 of Marcilly et al. (2021) (based on the age of zircons, which are
produced in arc environments), CO2 during this interval is much more similar to GEOCARBSULFOR also run with M12 of Marcilly
et al. (2021) (purple vs. blue lines in Fig. 5A).

SCION also predicts higher CO2 from the Cretaceous to present-day when compared to the GEOCARB models. This cannot be
explained by a difference in degassing (Fig. 5C) because the two degassing records are very similar over this time, due in part to
much better preservation of oceanic crust over the last 200 Myr which facilitates plate reconstruction. Indeed, the modified SCION
run is nearly identical to its default run during this time (purple vs. orange lines in Fig. 5A). Instead, the difference is related to a
weaker chemical weathering feedback in SCION (vs. GEOCARB) during the Cretaceous and Paleogene. This is confirmed when early
versions of SCION are compared to the COPSE model over this timeframe—in which the only differences between the models
were the climate module (Mills et al., 2021). Because SCION spatially resolves chemical weathering through its ‘offline’ coupling
with GCM, its results during this period are generally taken to be more robust. That said, predictions of the organic carbon cycle are
still likely to be more realistic in GEOCARB models due to the isotope mass balance technique.

Clearly, spatial consideration of chemical weathering is an important consideration because—at least for the Paleogene and
Neogene—SCION is muchmore consistent with the CO2 proxies (Fig. 5A); indeed, low Cenozoic CO2 estimates from recent COPSE
and GEOCARB models are a well-studied but still chronic problem in long-term carbon cycle research (e.g., Park and Royer, 2011;
van der Meer et al., 2014; Krause et al., 2018; Lenton et al., 2018; Mills et al., 2019; Marcilly et al., 2021). Brune et al. (2017)
previously addressed this problem by arguing for elevated degassing via continental rifting during the mid-Cenozoic. When they ran
GEOCARB with a rifting control on CO2 emissions, the mismatch to the proxies disappeared. However, continental rifting is not
currently thought to be the dominant process responsible for tectonic CO2 outgassing—the rifting record of Brune et al. (2017) is
incorporated into global CO2 emissions in the SCION model (orange line, Fig. 5A), and along with altered chemical weathering
intensity, helps explain some of the previous model-data mismatch over the Cenozoic.

Another important timeframe where models fail to replicate CO2 proxies is the Ordovician-Silurian. There are few proxies from
this time, but they tend to agree on relatively low values around 500 ppm, whereas the SCION and GEOCARB family of models
typically predict over 2000 ppm. It is likely that the proxies are closer to the truth than the models here, because it is known that the
mid-late Ordovician experienced ice sheet advance to paleolatitudes approximately equal to the Pleistocene, implying a similar or
indeed lower surface temperature than the preindustrial—although because of the lower solar flux in the Paleozoic (e.g. Kasting,
1989) we would still expect CO2 levels to be significantly higher than during the Pleistocene. Nevertheless, replicating low
Ordovician surface temperature in physical climate models requires less than 1000 ppm in the Fast Ocean and Atmosphere
Model (FOAM; Goddéris et al., 2014), and approximately the same value in the HadCM3BL climate model (Valdes et al., 2021;
2 �C above pre-Industrial at �1600 ppm).

There have been several attempts to reproduce lower CO2 concentrations in the earlier Paleozoic in carbon cycle models. Lenton
et al. (2012) suggested that early nonvascular plants, which colonized the land during the Ordovician period, had a substantial
impact on chemical weathering and organic carbon burial, and therefore led to transient lower steady-state CO2 concentrations,
which depended on an episodic release of the nutrient phosphorus as plants exhausted weatherable terranes. This idea also
potentially explains the large positive carbon isotope excursions that appear to accompany cooling in the Ordovician—as these
could reflect increased burial of isotopically-light organic carbon when phosphorus is more readily available. An alternative
explanation for these isotope excursions and CO2 drawdown is that bioavailable phosphorus was instead delivered to the ocean
through a large period of explosive volcanism known to have occurred during the later Ordovician (Longman et al., 2021), and was
efficiently recycled to marine photosynthesizers during periods of marine anoxia associated with the late Ordovician extinction

https://github.com/Alexjkrause
https://github.com/bjwmills
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(Qiu et al., 2022). Further hypotheses for later Ordovician cooling focus on the exposure of weatherable lithologies in the humid
tropics during this time—potentially volcanic arcs (Young et al., 2009) and/or arc-continent collisions which expose more reactive
silicate material (Macdonald et al., 2019). To date, there has not been a quantitative comparison of these ideas within a numerical
framework. None are well-represented within the plotted GEOCARB or SCION models.

Next steps in carbon cycle modeling

The mode towards spatial representation of climate and weathering processes has improved the data-model mismatch over the
Cretaceous and Cenozoic. There is still work to do with these models in better representing and assessing potential drivers of
Paleozoic changes in CO2 levels, but this approach is also still in its infancy, and general advancements may also help to resolve
data-model challenges throughout the Phanerozoic.

Improving spatial and temporal resolution of climate model data
The spatially-resolved long-term carbon cycle models GEOCLIM and SCION both use steady state outputs of the climate model
FOAM (Jacob, 1997; Donnadieu et al., 2006) to parameterize their spatial surface processes. But FOAM is a relatively old and
coarse-resolution model (48 � 40 grid boxes, or an average of 7.50 � 4.50 long/lat per grid box). Much higher resolution climate
models are now routinely used for paleoclimate simulation, for example HadCM3L (96 � 73 boxes or 3.750 � 2.50; Valdes et al.,
2021) or CESM (288 � 192 boxes, or 1.250 � 0.940; e.g., Macarewich et al. 2021; Matthaeus et al., 2023). The use of an older and
less computationally-expensive model is a result of the large number of simulations required to build an accurate climate emulator
for use with the carbon cycle model—i.e. a data structure in which many CO2 levels and time points are sampled and one can
therefore input a time period and CO2 level and retrieve an instantaneous estimate of spatially-resolved temperature and hydrology.
This computational expense also limits the number of time points that can be run in the climate model: the current FOAM
simulations are performed every 20–40 Myrs, and thus struggle to represent changes in continental configuration on shorter
timescales. In the coming years, larger data structures of model runs (e.g. many CO2 levels andmany time points) will likely become
available for more modern climate models, and will undoubtedly improve the representation of surface processes in models like
GEOCLIM and SCION, which may help resolve model-data mismatch.

Improving representation of non-silicate weathering processes
Silicate weathering is a major focus of long-term carbon cycle models, as this is the major abiotic sink for CO2 over long timescales.
But other continental weathering processes are also important for controlling atmospheric CO2 concentration. While current
models all use some representation of the weathering of organic carbon, sulfides and sulfates, the recent advances in
spatially-resolved representation have not yet been extended to these species. Erosion can supply phases other than silicate for
weathering leading to weathering-induced CO2 emissions that can release as much CO2 as volcanoes (Hilton, 2023). Oxidative
weathering of organic carbon is a major source of CO2, and also displays significant lithological and erosion dependence which may
impact the long-term carbon cycle (Hilton andWest, 2020). Weathering of sulfides has been shown to impact the long-term carbon
cycle through production of sulfuric acid that dissolves carbonate rocks (Torres et al., 2014), and while this has been incorporated
in a simple manner into some long-term carbon cycle models with minimal effect (Mills et al., 2014), more complete treatments
of continental processes and marine chemistry may alter how this process impacts CO2 levels (Maffre et al., 2021). Sulfate (e.g.,
gypsum) weathering is also likely to impact the long-term carbon cycle through delivery of calcium, which alters CaCO3 solubility
in seawater and ultimately may change the burial rate of carbonate minerals (Shields and Mills, 2021).

Simplified ocean chemistry
Current long-term carbon cycle models tend to use an extremely simple representation of marine chemistry which assumes
alkalinity balance, and therefore equates total deposition of carbonate minerals to the terrestrial inputs of the major divalent
cations (Ca, Mg) and bicarbonate ions (HCO3

−). In reality, carbonate deposition is controlled by the availability of the Ca2+ and
CO3

2− ions in seawater, and thus changes to this balance independent of silicate and carbonate weathering (e.g. through addition or
removal of calcium, or changes to temperature or pH) might lead to different model predictions for variations in atmospheric
CO2 concentration.

Reverse weathering
Reverse weathering is the process by which weathering products combine to form marine clays rather than carbonate minerals.
With high levels of reverse weathering, the silicate weathering feedback would be effectively nullified and atmospheric CO2 levels
could rise. It has been suggested that high-silica oceans, in the time before siliceous organisms evolved, resulted in the generally
high CO2 levels of the Precambrian through increased reverse weathering (Isson and Planavsky, 2018). High levels of reverse
weathering—due to extinction of many siliceous organisms at the Permian-Triassic Mass Extinction—have also been suggested as a
driver of very high Early Triassic CO2 levels (Cao et al., 2022; Isson et al., 2022). Unfortunately, there is no clear proxy record of
reverse weathering and its contribution to the present-day carbon cycle may be minimal (Isson and Planavsky, 2018), making the
process extremely difficult to model and assess accurately at the global scale. Nevertheless, it is not incorporated into any current
long-term carbon cycle models.
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Terrestrial lithology
Current spatially-resolved long-term carbon cycle models tend to assume a homogeneous global continental lithology, whereas
lithology is extremely important for present day silicate (and other major) weathering rates. As discussed in the Current status of
paleo-CO2 reconstructions section, more reactive mafic silicates in arcs and suture zones are known to weather more rapidly, and
when considered in spatially-resolved modeling studies have been shown to strongly impact steady state CO2 (Richey et al., 2020).
Future models should include these into their continental process calculations. This ‘volcanic’ weathering has been considered in
GEOCARB models for many years (e.g. Berner, 2008), but only at the global scale, based on global availability of volcanic rock.
But it is the local coincidence of volcanic terranes with vigorous hydrology and high temperatures which should lead to
locally-enhanced weathering rates during some periods, whereas high-latitude volcanic provinces like the Siberian Traps probably
contribute very little to global silicate weathering.

Terrestrial vegetation
As discussed in Section 9.8.3.3, the effect of vegetation on enhancing silicate weathering has been incorporated into the GEOCARB
models since their inception, but at the global scale. Again, this effect is likely to be pronounced in some areas and restricted in
others, which may become particularly uncertain where high erosion rates allow for rapid weathering but restrict the habitability
for plants. Recent investigations into the spatially-resolved effects of land plant colonization reveal complex relationships that are
not included in current long-term carbon cycle models (Maffre et al., 2021; Matthaeus et al., 2021, 2023).

Combining isotope mass balance with spatially-resolved surface processes
In the current literature, the GEOCARB models are better at reconstructing organic carbon fluxes because they use isotope mass
balance calculations to infer these rates from the geological record of carbon isotopes. However, spatial models like SCION are
arguably better at representing the inorganic carbon cycle because of their more detailed treatment of silicate weathering. Thus, our
best estimates of paleo-CO2 may come from combining the spatially-resolved models with the isotope mass balance approach for
their organic carbon fluxes.
Summary and future directions for paleo-CO2 reconstruction

The record of paleo-CO2 and its influence on climate, ecosystems and surface processes is integral to understanding interactions in
the Earth System. How atmospheric CO2 has evolved over time is also key to understanding how surface processes and ecosystems
may respond to and function under future high CO2 concentrations as paleo-CO2 reconstructions are the only observational source
of such information. In this review, we discussed the commonly used marine and terrestrial proxies available for paleo-CO2-

reconstruction, addressing the environmental and/or physiologic processes that mechanistically link each proxy to CO2 and the
challenges in their application as well as the opportunities for proxy advancements. We presented a Phanerozoic compilation of all
published paleo-CO2 estimates (n ¼ 4077) that illustrates broad patterns in paleo-CO2 that studies indicate are robust on the first
order. The same compilation, however, reveals considerable scatter in CO2 estimates for many geologic intervals. These broad ranges
in values reflect inconsistencies between proxy estimates and the paucity of well-constrained and systematically defined uncer-
tainties for many. These limitations in turn, largely reflect uncertainty about how environmental and ecological processes and
conditions affect the CO2 proxy signals. That said, considerable advancements in deep-time proxy validation and application
and development and refinements of modeling approaches have been made by the paleo-CO2 community over the past decade
with ongoing efforts targeting further needs.

We highlighted a recently published, high-fidelity CO2 record for the Cenozoic (The CenCO2PIP Consortium, 2023) that
substantially improves our understanding of the evolution of CO2 over the past 66 Myr and sets the benchmark for future paleo-
CO2 reconstructions. A second phase of the international CO2 Proxy Integration Project, the Phanerozoic CO2PIP, is currently
underway with the primary goals to improve the precision and accuracy of paleo-CO2 estimates for the pre-Cenozoic and to build a
statistically robust multi-proxy atmospheric CO2 record for the Phanerozoic. This ongoing effort builds on the success of the
CenCO2PIP Consortium, continuing to develop the standardized paleo-CO2 proxy data repository that includes all metadata and
updated chronology and meets FAIR (findable, accessible, interoperable, reusable) data standards. The Consortium is modernizing
published pre-Cenozoic CO2 proxy records based onmodern proxy theory, focusing on paleosol- and fossil leaf-based CO2 proxies.
Quantified representations (forward proxy system models) of the conditions and processes that govern the CO2 signal are being
built by the Consortium for commonly used proxies to advance our understanding of proxy sensitivities to individual controls that
affect the accuracy and precision of CO2 estimates. Ultimately, statistical integration of the new proxy models with the vetted and
modernized proxy data using inversion analysis will produce quantitative, data-driven CO2 reconstructions for individual records
and will generate a robust, quantitative reconstruction of atmospheric CO2 concentrations through the Phanerozoic.

Considerable progress in improving the accuracy and precision of existing and future records is anticipated. That said, much
about how the CO2-climate interplay within the carbon cycle shapes the Earth system, as well as the complex and reciprocal impacts
on and responses of the lithosphere, hydrosphere and atmosphere, can be deciphered from the existing CO2 record. It is in this
context that we offered in this review an overview of the current understanding of pre-Cenozoic CO2 evolution in an Earth system
perspective. The CO2PIP Consortium invites paleo-CO2 experts to engage in this modernization process by contributing
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their paleo-CO2 records and associated metadata to the community project ‘archive’ (paleo-co2.org) and to join the vetting and
updating of records when they no longer conform to the ever-evolving understanding of the proxies. Proxy-specific data templates
are provided on the website to facilitate new data contributions and to ensure that the compilation stays current. Analogous to
the growing paleo-CO2 ‘archive’, the vetted ‘product’ compilation will be updated periodically and made accessible through
paleo-co2.org, NCDC and Zenodo.

We overviewed carbon cycle models (GEOCARB family of models, COPSE, SCION) that have been used to quantify the
long-term evolution of atmospheric CO2. Carbon cycle modeling has been an important approach for over three decades to
reconstruct the evolution of atmospheric CO2 on the multi-million-year timescale as they quantitatively represent the key processes
that transfer carbon between Earth’s crustal and surficial reservoirs. We discussed several key updates that target the uncertainty in
modeled CO2, including efforts to better constrain climate sensitivity and to spatially resolve climate, hydrologic, and lithologic
factors that control chemical weathering in long-term carbon cycle models. Key patterns in recent modeling efforts were presented
and discussed in the context of to what degree they improve data-model mismatches, in particular for the Cretaceous through
Cenozoic. Seven areas for consideration in future carbon cycle modeling were offered ranging from improved spatial and temporal
resolution of climate model data and better representation of spatially resolved surface lithologies and terrestrial vegetation, and of
non-silicate weathering processes and of reverse weathering, among other targets.
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