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     Angiosperms today comprise ~90% of plant species, but 
many aspects of their origin and early radiation are poorly 
known ( Taylor et al., 2009 ). The earliest angiosperm fossils are 
rare, Late Valanginian (139 – 136 Ma, timescale after  Gradstein 
et al., 2004 ) pollen from Israel ( Brenner, 1996 ). The Lower Ap-
tian to Lower Cenomanian (125 – 96 Ma;  Hochuli et al., 2006 ) 
Potomac Group sequence from the United States mid-Atlantic 
coast contains some of the earliest angiosperm megafossils and 
provides critical constraints on their ecology. In this sequence, 
angiosperms become increasingly abundant through time in ri-
parian facies (e.g., stream channels, levees, crevasse splays), 
while conifers and Bennettitales dominate in quiet, nutrient-
limited swamp environments where plants likely experienced 
little physical disturbance ( Hickey and Doyle, 1977 ;  Upchurch 
et al., 1994 ). Further, some of the Potomac taxa are possibly 
herbaceous based on their relatively low leaf-rank, cordate ba-

ses, and fragile appearance ( Doyle and Hickey, 1976 ;  Hickey 
and Doyle, 1977 ;  Upchurch et al., 1994 ). Because fast-growing, 
weedy plants typically dominate in highly disturbed riparian 
corridors today, and because extant herbs typically employ a 
fast growth strategy ( Grime, 2001 ), sediment and fossils from 
the Potomac support the proposal that many early angiosperms 
were fast-growing, weedy shrubs and herbs ( Wettstein, 1907 ; 
 Stebbins, 1965, 1974 ;  Bond, 1989 ) that fi rst became ecologi-
cally important in disturbed, streamside environments ( Doyle 
and Hickey, 1976 ;  Hickey and Doyle, 1977 ;  Taylor and Hickey, 
1992, 1996 ;  Wing et al., 1993 ). 

 The interpretations of growth strategy from Potomac Group 
fossils have provided key insights into the ecophysiology of 
early angiosperms ( Doyle and Hickey, 1976 ;  Hickey and Doyle, 
1977 ). However, it is not clear whether the attendant relation-
ships between growth rate and streamside environments held in 
the past, especially early in angiosperm evolution. Further, the 
geographic extent of a fast growth strategy at this early stage in 
angiosperm evolution is poorly known. 

 Growth strategy and the leaf economics spectrum   —      Growth 
rate cannot be measured directly from fossils, but intensity of 
resource use covaries with a large number of leaf traits that re-
fl ect fundamental trade-offs. This coordinated trait array is 
sometimes called the leaf economics spectrum ( Wright et al., 
2004 ). Plants with rapid resource acquisition (the  “ fast-return ”  
end of the spectrum) typically have a high mass-based photo-
synthetic and respiration rate, high concentration by mass of 
nitrogen and phosphorus, short leaf lifespan, and low leaf dry 
mass per area (LMA) ( Reich et al., 1997 ;  Westoby et al., 2002 ; 
 D í az et al., 2004 ;  Wright et al., 2004 ). The reverse is true for 
plants at the  “ slow-return ”  end of the spectrum: plants investing 
in a high LMA have slower photosynthetic rates but longer leaf 
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 Many key aspects of early angiosperms are poorly known, including their ecophysiology and associated habitats. Evidence for 
fast-growing, weedy angiosperms comes from the Early Cretaceous Potomac Group, where angiosperm fossils, some of them 
putative herbs, are found in riparian depositional settings. However, inferences of growth rate from sedimentology and growth 
habit are somewhat indirect; also, the geographic extent of a weedy habit in early angiosperms is poorly constrained. Using a 
power law between petiole width and leaf mass, we estimated the leaf mass per area (LMA) of species from three Albian (110 – 105 
Ma) fossil fl oras from North America (Winthrop Formation, Patapsco Formation of the Potomac Group, and the Aspen Shale). All 
LMAs for angiosperm species are low ( < 125 g/m 2 ; mean = 76 g/m 2 ) but are high for gymnosperm species ( > 240 g/m 2 ; mean = 291 
g/m 2 ). On the basis of extant relationships between LMA and other leaf economic traits such as photosynthetic rate and leaf 
lifespan, we conclude that these Early Cretaceous landscapes were populated with weedy angiosperms with short-lived leaves 
( < 12 mo). The unrivalled capacity for fast growth observed today in many angiosperms was in place by no later than the Albian 
and likely played an important role in their subsequent ecological success. 
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Further, recognition of a fast growth strategy at three widely 
separated sites would boost confi dence that fast growth was 
common among angiosperms at this time. 

 MATERIALS AND METHODS 

 Extant calibration   —     To supplement the woody dicot calibration of  Royer 
et al. (2007)  ( N  = 667 species-site pairs), we weighed and photographed dried 
leaves from 93 species of broad-leaved gymnosperms and 58 species of herba-
ceous angiosperms. All leaves were nonsessile with distinct petioles. We mea-
sured leaf area (blade + petiole) and petiole width with the program ImageJ 
(documentation and downloads at website  http://rsbweb.nih.gov/ij/ , National 
Institutes of Health, Bethesda, Maryland, USA), where petiole width is mea-
sured perpendicular to the midvein in the plane of the leaf blade, at the basalmost 
insertion of the blade into the petiole ( Royer et al., 2007 ). Two leaves per species 
were typically processed. Although all leaves were pressed while being dried, 
some shrinkage in petiole width may be expected, especially among herbs due to 
their weakly lignifi ed tissues ( Mauseth, 1988 ). Moreover, taphonomic processes 
during fossilization can lead to an infl ation of petiole width (typically less than 
10%) ( Niklas, 1978 ;  Rex and Chaloner, 1983 ;  Rex, 1986 ; see also  Royer et al., 
2007 ). Both of these processes would lead to an overestimation of LMA, mean-
ing that our estimates of LMA for fossils are probably maxima. It is possible that 
a combination of petiole length and petiole cross-sectional shape and size may 
correlate more strongly with LMA than petiole width alone, but these dimen-
sions are rarely preserved in fossils ( Royer et al., 2007 ). 

 Gymnosperm material came from herbaria (National Herbarium of New 
South Wales, Dame Ella Campbell Herbarium, and Yale University Herbar-
ium) with the exception of fresh  Ginkgo biloba  from the Wesleyan University 
campus. We made fresh collections of herbaceous angiosperms from north of 
Reed Gap in Wallingford, Connecticut, USA; we additionally recorded the 
fresh mass of these leaves (leaves weighed after being in sealed plastic bags for 
~2 h). This Connecticut herb collection was supplemented with New Zealand 
herbs from the Allan Herbarium. 

 Fossil sites   —     Following the protocol described in the previous section, we 
measured the petiole widths and leaf areas for 179 fossil specimens represent-
ing 30 species-site pairs (27 angiosperm, 3 gymnosperm) from three Early Cre-
taceous fossil fl oras ( Table 1 ).  Only taxa with at least two measurable specimens 
and with distinct petioles were processed. Measured specimens from the Win-
throp fl ora come primarily from quantitative census collections ( Miller et al., 
2006 ;  Miller and Hickey, 2008 ) at the Yale Peabody Museum, the Denver Mu-
seum of Nature and Science, the National Museum of Natural History of the 
Smithsonian Institution, and the Burke Museum; specimens from the Patapsco 
come from historical collections (e.g.,  Clark et al., 1911 ;  Hickey and Doyle, 
1977 ) at the National Museum of Natural History; specimens from the Aspen 
Shale fl ora come mostly from quantitative census collections ( Peppe et al., 
2008 ) at Yale Peabody Museum. 

lifespans, such that their slower revenue (carbon uptake) rate is 
compensated by a longer-lasting revenue stream ( Westoby et 
al., 2002 ;  Wright et al., 2004 ). Critically, these interrelation-
ships among leaf economic variables are not strongly affected 
by phylogeny ( Ackerly and Reich, 1999 ). The leaf economics 
spectrum has also been linked to broader patterns and processes, 
including insect herbivory ( Coley, 1983 ;  Westoby et al., 2002 ), 
litter decomposition rate ( Santiago, 2007 ;  Cornwell et al., 
2008 ), nutrient mineralization rate ( Parton et al., 2007 ;  Man-
zoni et al., 2008 ), and community assembly ( Grime, 2001 ; 
 Shipley et al., 2006a ). The correlations that underlie the spec-
trum are considered causal ( Reich et al., 2003 ;  Wright et al., 
2004 ;  Shipley et al., 2006b ) and thus should be broadly univer-
sal and applicable on macroevolutionary timescales. 

 No leaf economic trait can be measured directly from fossils. 
Recently,  Royer et al. (2007)  identifi ed a biomechanical scaling 
law between petiole width (PW) and leaf mass. In brief, heavier 
leaves require more substantial petioles for support. The PW 
term is raised to the second power to better capture the two-di-
mensional nature of petiole cross sections and divided by leaf 
area ( A ) so that PW 2 / A  can be correlated directly to LMA (see 
 Royer et al., 2007  for details about modeling the scaling relation-
ship). Importantly for this study, LMA has been observationally 
linked to growth rate in many species (e.g.,  Poorter and Bongers, 
2006 ;  Poorter et al., 2009 ).  Royer et al. (2007)  calibrated the bio-
mechanical relationship within extant, woody nonmonocotyle-
donous plants ( “ woody dicots ” ; gray circles in  Fig. 1 ) and applied 
it to two Eocene fl oras (Republic, Washington and Bonanza, 
Utah). More recently, LMA was estimated for fossils spanning 
the Paleocene-Eocene Thermal Maximum in northern Wyoming, 
USA ( Currano et al., 2008 ) and for the late Paleocene Cerrej ó n 
fl ora in Colombia ( Wing et al., 2009 ). An advantage of the 
method is that it is based on two simple characters, petiole width 
and leaf area, that are measurable in many fossil leaves (see Ma-
terials and Methods and  Royer et al., 2007  for further details). An 
alternative approach for inferring paleo-leaf economics, which 
we do not pursue here, relies on the correlation observed in many 
extant taxa between leaf vein density and transpiration ( Uhl and 
Mosbrugger, 1999 ;  Boyce et al., 2009 ). 

 Inferring the growth strategy of early angiosperms   —       Royer 
et al. (2007)  demonstrated the considerable promise for recon-
structing LMA and linked leaf economic information for fossil 
taxa and their associated landscapes. The method provides the 
opportunity to test, with fossils, previous ecophysiological in-
terpretations of fast growth rate in early angiosperms. Here, we 
expand the woody dicot calibration of  Royer et al. (2007)  to 
include broad-leaved gymnosperms and herbaceous angio-
sperms, which allows for testing potential differences in LMA 
between fossil angiosperms and gymnosperms and for more 
rigorously estimating the LMA of putative fossil herbs. We 
then apply the resultant relationships to three broadly coeval 
sites (middle to late Albian; 110 – 105 Ma) that contain some of 
the earliest megafl oral remains of angiosperms: the Winthrop 
Formation in north-central Washington State, the Patapsco For-
mation of the Potomac Group in eastern Virginia and Maryland, 
and the Aspen Shale in southwestern Wyoming. If reconstructed 
LMA for angiosperms at these sites is low (and presumably 
linked to short leaf lifespan, high photosynthetic rate, and rapid 
resource acquisition), then such a fi nding would support previ-
ous inferences for fast-growing plants during the Albian and 
increase confi dence that the interpretation of a weedy lifestyle 
for the complete Potomac sequence (125 – 96 Ma) is correct. 

  Table  1. Sampling summary of fossil sites in the United States with 
paleolatitude and mean annual temperature (MAT). All sites are middle 
to late Albian in age (110 – 105 Ma) (see Materials and Methods for 
details). Taxa information is for dicotyledonous leaves only. 

Flora Location
Latitude 

 (  °  N) MAT (  °  C)

Taxa ( N )
Specimens 
 used ( N )Present Used

Winthrop North-central 
Washington

38  a 23.4  a 43  a 19 118

Patapsco Eastern Virginia 
and Maryland

36  a 19.1  a 28  b 5 31

Aspen Shale Southwestern 
Wyoming

50  c Unknown 16  d 3 12

 a  From  Miller et al. (2006) .
 b  From  Clark et al. (1911) .
 c  Based on reconstructions of  Housen et al. (2003)  and  Torsvik et al. 

(2008) .
 d  From  Peppe et al. (2008) .
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from 243 – 326 g/m 2  (open circles in  Fig. 2B ). Another differ-
ence is that gymnosperms are found mostly on stable paleosol 
sites, while angiosperms (and ferns) dominate on more highly 
disturbed crevasse splay deposits. 

 DISCUSSION 

 Biomechanical scaling in herbs and gymnosperms   —      The 
scaling relationships between area-normalized petiole width 
(PW 2 / A ) and LMA in herbaceous angiosperms and broad-
leaved gymnosperms are each different than the scaling in 
woody dicots reported by  Royer et al. (2007)  ( Fig. 1 ). Across 
the range of calibrated PW 2 / A , LMA is on average 43 – 75% 
lower for herbs than for woody dicots at a given PW 2 /A ( Fig. 
1B ). One reason for this disparity may be differences in leaf 
water content. The mean water content (by mass) in our freshly 
collected herbs was 82.8%, which compares favorably to other 
published values (82.2%,  N  = 579 species;  Vile et al., 2005 ). 
Woody dicots, in contrast, have distinctly lower water contents 

 The Patapsco Formation of the Potomac Group, which crops out in eastern 
Virginia and Maryland, USA, contains sediment deposited in a large fl uvial 
system, including stream channels, levees, crevasse splays, and meander cut-
offs ( Doyle and Hickey, 1976 ;  Hickey and Doyle, 1977 ;  Upchurch et al., 1994 ). 
All specimens presented here come from higher energy, physically disturbed 
environments (channels, levees, and splays). The age of the Potomac sequence 
is determined biostratigraphically with pollen ( Brenner, 1963 ; with updates 
from  Doyle and Hickey, 1976 ;  Hickey and Doyle, 1977 ;  Doyle, 1992 ) and with 
plant megafossils ( Doyle and Hickey, 1976 ;  Hickey and Doyle, 1977 ). All lo-
calities from the Patapsco used here have been dated to Brenner ’ s Subzone IIB 
(early Albian to early late Albian, 110 – 105 Ma;  Doyle and Hickey, 1976 ; 
 Hickey and Doyle, 1977 ). 

 The Winthrop Formation, in north-central Washington State, USA, contains 
a sequence of fossiliferous crevasse splay deposits and fi ner-grained, rooted, 
incipient paleosols ( Miller et al., 2006 ;  Miller and Hickey, 2008 ). Biostrati-
graphically, the Winthrop fl ora correlates most closely with Subzone IIB of the 
Potomac. Ammonites from the underlying Harts Pass Formation constrain the 
maximum age to middle Albian (~109 Ma), while the minimum age is con-
strained by a U/Pb-zircon age from a cross-cutting dike (97.5 Ma) and by the 
occurrence of  Vitiphyllum ,  Nelumbites ,  Rogersia ,  Menispermites , and a high 
diversity of  Sapindopsis  species ( > 99.6 Ma) ( Miller et al., 2006 ;  Miller and 
Hickey, 2008 ). 

 The fi nal fl ora comes from the upper part of the Aspen Shale in southwestern 
Wyoming, USA ( Brown, 1933 ;  Peppe et al., 2008 ). The fossiliferous beds are 
interpreted as a sequence of incipient paleosols and ashfall deposits in a paludal 
setting. Biostratigraphic correlation places the Aspen Shale fl ora in Subzone IIB 
of the Potomac Group and more broadly to the middle to late Albian based on 
comparisons with other western United States fl oras ( Peppe et al., 2008 ). 

 Statistics   —     We used the ordinary least squares regression and standardized 
major axis modules in the program SMATR (v. 2; documentation and down-
load at website http://www.bio.mq.edu.au/ecology/SMATR/) ( Warton et al., 
2006 ) to generate predictive transfer functions for LMA and to test for slope 
and intercept differences between regression lines, respectively; see  Warton et 
al. (2006)  for a discussion of the applicability of both regression approaches. 
The 95% prediction intervals for individual (fossil) predictions of LMA, which 
include a sensitivity to sample size, follow  Sokal and Rohlf (1995) ; coeffi cients 
for calculating prediction intervals of woody dicots and broad-leaved gymno-
sperms are provided in  Royer et al. (2007)  and Appendix S1 with the online 
version of this article, respectively. 

 RESULTS 

 The proportional scaling between area-normalized petiole 
width (PW 2 / A ) and LMA is signifi cant within both broad-leaved 
gymnosperms and herbaceous angiosperms ( Fig. 1 ;  see online 
Appendix S2 for species data). For broad-leaved gymnosperms, 
the slope of the relationship is similar to woody dicots ( P -value 
for common slope = 0.25) but the  y -intercept is shifted toward 
higher LMA values ( P  = 0.003 for shift in elevation). For her-
baceous angiosperms, the slope is signifi cantly fl atter ( P  = 0.03) 
and LMA values at a given PW 2 / A  are substantially lower than 
for woody dicots. 

 Application of the scaling laws to angiosperms in the Win-
throp, Patapsco, and Aspen Shale fl oras reveals universally low 
LMA: values range from 50.7 – 97.5 g/m 2  in the Winthrop, 
75.0 – 94.0 g/m 2  in the Patapsco, and 60.2 – 124.5 g/m 2  in the As-
pen Shale (fi lled circles in  Fig. 2B ;  see online Appendix S3 for 
species data). These estimates assume that all taxa are woody, 
but some taxa may be herbaceous (see introduction). For these 
putative herbs, their estimated LMA decreases by ~55% due to 
the different scaling relationship between herbaceous angio-
sperms and woody dicots (black triangles in  Fig. 2B ). 

 The Winthrop fl ora also contains three well-preserved gym-
nosperm taxa that are appropriate for LMA analysis (nonsessile 
leaves with distinct petioles). The LMA for these taxa are con-
siderably higher than their companion angiosperms, ranging 

 Fig. 1.   Power-law scaling in extant vegetation between area-normal-
ized petiole width (PW 2 / A ) and leaf dry mass per area (LMA). Gray sym-
bols and thin regression line in both panels correspond to the woody dicot 
compilation of  Royer et al. (2007)  (log[LMA] = 0.3820   ×   log[PW 2 / A ] + 
3.070;  N  = 667 species-site pairs,  r 2   = 0.55,  F  1,666  = 825,  P   <  0.0001). (A) 
Broad-leaved gymnosperms (log[LMA] = 0.3076   ×   log[PW 2 / A ] + 3.015;  N  
= 93 species,  r 2   = 0.44,  F  1,93  = 72.4,  P   <  0.0001). The two data points for 
Ginkgoaceae ( Ginkgo biloba ) correspond to leaves from short and long 
shoots. (B) Herbaceous angiosperms (log[LMA] = 0.2204   ×   log[PW 2 / A ] + 
2.245;  N  = 58 species,  r 2   = 0.32,  F  1,57  = 19.45,  P   <  0.0001).   
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former is much more informative about leaf economics ( Wright 
et al., 2004 ). However, even when the average offset in water 
content is accounted for (30.3%), LMA is still 25 – 66% lower 
on average for the adjusted herbs than for woody dicots at a 
given PW 2 / A  (online Appendix S4). Thus, differences in water 
content are just one factor that contributes to the different 

(63.0%,  N  = 410 species;  Cornelissen et al., 1996 ;  Niinemets, 
2001 ;  Vile et al., 2005 ). Because petioles are designed to sup-
port fresh leaf mass, not just dry leaf mass, this consistent dif-
ference in water content may lead to offsets when PW 2 / A  is 
plotted against leaf dry mass per area (LMA); we plot against 
leaf dry mass per area, not leaf fresh mass per area, because the 

 Fig. 2.   Estimated leaf dry mass per area (LMA) for three Early Cretaceous fl oras and comparison to extant vegetation. (A) Relationship between LMA 
and leaf lifespan for 678 extant species of gymnosperms, angiosperms (woody and herbaceous), and ferns (data from  Wright et al., 2004 ). The LMA bin 
size is 20 g/m 2 . The LMA threshold that best differentiates leaves with a lifespan of  > 12 mo (evergreen) from  < 12 mo (mostly deciduous within woody 
taxa) is marked with a gray bar (129 g/m 2 ). (B) Estimated LMA for species in the Winthrop, Potomac, and Aspen Shale fl oras. Taxon-appropriate regres-
sions were used (gymnosperm and woody dicot; circles; see  Fig. 1A ); for putative herbs, LMA estimates from the herb-specifi c regression ( Fig. 1B ) are 
included (triangles). Errors are 95% prediction intervals. Taxonomy follows  Miller (2007)  for the Winthrop,  Doyle and Hickey (1976)  and  Hickey and 
Doyle (1977)  for the Potomac, and  Peppe et al. (2008)  for the Aspen Shale.   
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riparian Little Pee Dee State Park differs from the Winthrop in 
that it contains an important subcomponent of high LMA an-
giosperm species ( Fig. 3D ). Thus, the commonly observed as-
sociation today between angiosperms with a fast-return growth 
strategy and riparian habitats (e.g.,  Fig. 3B, C ) ( Grime, 2001 ) 
appears very long-lived. 

 Similar to the Potomac (see introduction), angiosperms and 
gymnosperms in the Winthrop occupied different subenviron-
ments on the fl oodplain: fast-return angiosperms dominate in 
the higher energy, crevasse splays while slow-return gymno-
sperms are more common in the paleosols, which are inter-
preted as low energy, distal fl oodplain deposits. Ferns are the 
only other plant group that commonly coexists with these early 
angiosperms. Early angiosperms were likely competing directly 
with ferns ( Hickey and Doyle, 1977 ;  Lidgard and Crane, 1990 ; 
 Peppe et al., 2008 ), which today both share the capacity for 
rapid reproduction ( Gifford and Foster, 1988 ;  Mauseth, 1988 ) 
and vegetative growth ( Brodribb et al., 2005 ;  Boyce et al., 
2009 ). This competition model ( Hickey and Doyle, 1977 ;  Bond, 
1989 ;  Lidgard and Crane, 1990 ;  Taylor and Hickey, 1996 ) ar-
gues that the capacity for rapid growth was integral to the  “ tool-
kit ”  of early angiosperms, which when coupled with their rapid 
fl ower-to-seed time gave them competitive superiority in physi-
cally disturbed, nutrient-rich environments. Our quantitative 
data support this model. 

 Our study provides ecological information about a single 
time interval (middle to late Albian; 110 – 105 Ma) some 30 Myr 
after the fi rst unambiguous evidence for angiosperms ( Brenner, 
1996 ). At least four taxa in our data set are from basal families 
(noneudicots), including Chloranthaceae and Monimiaceae 
( Miller, 2007 ;  Peppe et al., 2008 ), suggesting that a fast-return 
strategy predates the middle Albian. Angiosperm leaf fossils 
from the Potomac extend back to the early Aptian (~125 Ma), 
but unfortunately they are not appropriate for LMA estimation 
(clear and distinct petioles, reconstructable leaf area) owing to 
their fl imsy construction ( Hickey and Doyle, 1977 ). The ripar-
ian depositional environment ( Doyle and Hickey, 1976 ;  Hickey 
and Doyle, 1977 ) of these older fossils, however, argues for the 
presence of a fast growth strategy. Further, the cheap construc-
tion of these leaves implies a low LMA and a weedy lifestyle. 
The only other angiosperm megafossils from this early interval 
are likely aquatic in habit, including unambiguous Nymphae-
ales (water lilies) ( Friis et al., 2001 ) from the Early Albian 
(112 – 109 Ma;  Heimhofer et al., 2007 ) and  Archaefructus , a ge-
nus of aquatic herbs from the late Berremian/early Aptian (~125 
Ma) ( Sun et al., 2002 ;  Zhou et al., 2003 ). 

 What was the ecology of the earliest angiosperms? The 
megafossil record best supports a weedy or aquatic origin; 
moreover, most phylogenetic reconstructions ( Qiu et al., 1999 ; 
 Doyle and Endress, 2000 ;  Moore et al., 2007 ;  Saarela et al., 
2007 ) contain families near the angiosperm root that are also 
consistent with these two origin hypotheses (Chloranthaceae 
for the weedy origin; Nymphaeales for the aquatics origin) 
( Doyle and Hickey, 1976 ;  Hickey and Doyle, 1977 ;  Friis et al., 
2001 ). These oldest fossils are ~10 Myr younger than the fi rst 
evidence for angiosperm pollen, but they still place serious con-
straints on the range of possible habitats in which angiosperms 
evolved. In the case of the weedy origin hypothesis, though, 
 Amborella , Nymphaeales, and Austrobaileyales form a clade 
basal to Chloranthaceae in most recent molecular phylogenies 
( Qiu et al., 1999 ;  Moore et al., 2007 ). Ecophysiological obser-
vations of the remnant, extant representatives of this basal clade 
(excluding Nymphaeales) suggest that the earliest angiosperms 

PW 2 / A  – LMA scaling in  Fig. 1B . Another likely contributing 
factor is the weakly lignifi ed stems and petioles of herbs 
( Mauseth, 1988 ), which require herbs to build thicker petioles 
relative to woody taxa for leaves of equivalent mass. 

 For broad-leaved gymnosperms, LMA is on average some-
what higher (19 – 58%) than for woody dicots at a given PW 2 / A  
( Fig. 1A ). In contrast to the herbs, this offset cannot be ex-
plained by large differences in water content (gymnosperms: 
68.9%,  N  = 8 species;  Cornelissen et al., 1996 ;  Niinemets et al., 
2002 ; woody dicots: 63.0%, see previous paragraph). However, 
most gymnosperm petioles are at least as lignifi ed as woody 
dicots ( Mauseth, 1988 ); this increased strength provides a func-
tional explanation for why gymnosperm leaves are heavier per 
unit petiole width than woody dicots. 

 Ecophysiology of early angiosperms   —      The low recon-
structed LMA for angiosperms in the Winthrop, Patapsco, and 
Aspen Shale fl oras ( Fig. 2B ) is most consistent with a strategy 
that prioritizes rapid resource acquisition. If any of the taxa 
were herbaceous, then estimated LMA would be even lower 
( Fig. 2B ). We surmise that these early angiosperms were fast 
growers with a high photosynthetic rate and short leaf lifespan 
(see introduction).  Wright et al. (2004)  observed a strong rela-
tionship in extant vegetation between LMA and leaf lifespan, 
where an LMA of 129 g/m 2  corresponded to an average leaf 
lifespan of 12 mo ( Fig. 2A ). If we assume a similar relationship 
in the past, then all of our angiosperm taxa had leaf lifespans 
shorter than 12 mo. In contrast, gymnosperms, with their high 
estimated LMA ( Fig. 2B ), were pursuing a fundamentally dif-
ferent, slow-return economic strategy (although our data are 
limited;  N  = 3 species). 

 While low LMA is linked to fast growth rates in many spe-
cies (e.g.,  Poorter and Bongers, 2006 ;  Poorter et al., 2009 ), the 
relationships within the leaf economics spectrum are noisy. For 
example, the  r 2   of the log-log relationship between LMA and 
leaf lifespan is 0.42 ( N  = 678 species – site pairs;  Wright et al., 
2004 ). A number of factors contribute to the noise; for example, 
leaves from shade-tolerant plants typically have a lower LMA 
than shade-intolerant plants with the same leaf lifespan ( Poorter 
et al., 2009 ). Thus, we cannot be certain that all of our fossil 
species had leaf lifespans  < 12 mo and a fast-return growth strat-
egy. But, because the low LMA syndrome is ubiquitous among 
all the fossil angiosperms, we consider our data best support the 
presence of a weedy growth strategy in some, and probably 
most, of these plants. 

 The suite of angiosperm LMA values in the Winthrop fl ora, 
our largest collection ( N  = 19 species), best matches extant ri-
parian vegetation ( Fig. 3 ).  This is perhaps unsurprising consid-
ering the Winthrop ’ s depositional environment is interpreted as 
riparian ( Miller et al., 2006 ;  Miller and Hickey, 2008 ) (see also 
Materials and Methods), but as discussed earlier it is risky to 
assume a priori that a relationship between  “ fast-return ”  species 
and streamside environments held in the past. At minimum, the 
analysis of LMA provides an opportunity to directly test such 
assumptions. Because climate affects LMA ( Wright et al., 2005 ; 
 Poorter et al., 2009 ), the most appropriate riparian comparison 
to the Winthrop, which is interpreted as warm (mean annual 
temperature [MAT] = 23.4  °  C) ( Miller et al., 2006 ) and mesic 
(e.g., see climate model simulations and compilation of climati-
cally sensitive sediments in  Beerling and Woodward, 2001 ), is 
Big Hammock Wildlife Management Area, a warm-temperate, 
mesic site in south Georgia ( Fig. 3C ; MAT = 19.0  °  C; mean an-
nual precipitation = 120 cm). The LMA suite in the nearby non-
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were slow-growing, understory evergreen shrubs and small 
trees in dimly lit, evermoist, physically disturbed montane for-
ests ( Feild et al., 2004, 2009 ). However, the use of extant taxa 
as analogs to the past require robust phylogenies and no modi-
fi cations over time in the measured traits ( Stebbins, 1974 ;  Doyle 
and Hickey, 1976 ;  Feild and Arens, 2005, 2007 ). Unfortunately, 
the ecology of the earliest angiosperms remains uncertain. A 
substantial challenge for resolving this debate is the recovery of 
megafossils from the fi rst 10 Myr of the angiosperm record. 
With such fossil leaves in hand, the analysis of LMA from peti-
olar dimensions, perhaps in conjunction with vein density mea-
surements ( Boyce et al., 2009 ), could yield powerful and 
complementary insights. 
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